流体力之积分的应用

目录

【流体力背景补充】

【问题描述】(1919年蜜糖大泛滥)

【问题解答】

【建立模型】

【问题结论】

【题外话----波士顿甜到忧伤】


【流体力背景补充】

        由于水坝受的压强随着深度而增加,工程师把水坝设计得底部比顶部更厚(详见图2)为产生水电能,闸门(称为水阀门),安置在水坝底部附近,打开闸门就让高压下的水流人涡轮发电机。工程师必须计算在不同深度顶着这些闸门的总力以设计闸门本身和开启它们的水力系统。

        引人注目的是对水坝的每一点的压强仅依赖该点距水平面多远,而不依赖水坝表面在该点是如何倾斜的。在水面以下 h 英尺的点处每平方英尺的压力总是  62.4h。数字62.4是水的以每立方英尺磅为单位的水的比重。
        压强 = 62.4h 这一公式使你联想到涉及到单位时下式的意义:

                                                        (等式1)

                        ​​​​​​​               

                                                        (图1)不同物质的比重

        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​               

                                                        (图2)水坝侧面示意图

                                                为阻挡增长的压力,水坝愈往下建的越厚


        压强-深度等式
                在静止流体中,在深度 h 处的压强 p 是流体比重 w 的力倍:
                                                        p = wh        (等式2)



        在本节,我们利用等式 p = wh 导出流体作用在竖直或水平的容器壁上的整体或一部分上
的总力。


流体力的常深度公式

        在一个有水平底面的流体容器里,流体作用在底面上的总力可以通过,用底面压强乘以底面的面积计算 。

        如果F,p 和 A 分别是总力,压强和面积,则:
                                F = 总力 = 单位面积的力 * 面积
                                   = 压强×面积=pA
                                   = whA
        由(等式2)知 p = wh

        ​​​​​​​        ​​​​​​​     ​​​​​​​        ​​​​​​​​​​​​​        ​​​​​​​        

                                                               (图3)两个不同形状柱体

        这两个容器的注水到同一深度井且有同样的底面积。

        因而每个容器底所受的总力是同样的。

        这里容器的形状无关紧要


        作用在常深度曲面上的流体力
                F = pA = whA        (等式3)


【问题描述】(1919年蜜糖大泛滥)

        1919年1月15日下午1:00(一个非季节性暖日),一个90英尺尺高,90英尺直径的圆柱形金属罐在 Boston 北端的 Foster 街和 Commercial 街拐角处爆炸了,罐中储存的是Puritan Distilling 公司的糖蜜,糖蜜淹没街道达30英尺深,拦住了行人和马匹,冲垮了建筑,并且涌进了房屋 。最终糖蜜的踪迹遍布了整个城镇,甚至通过电车车厢和人们的鞋子延伸到了郊区,花费数周才把糖蜜清除干净。

        假设罐里装满了糖蜜,其比重为100磅/英尺了,罐破裂时糖蜜作用在罐底的总力是多少?

                                                       (图4)糖蜜冲击街区示意图

【问题解答】

        在罐底,糖蜜作用一个常压强:

        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​               

                                                         (图5)糖罐示意图

【思考一下】

        对于水平淹没的平板,像问题中的密糖罐底部,由于流体压强作用,在其上表面的向下的力由(等式3)计算 。

        但若板是垂直淹没的,对于它的压强在不同的深度是不同的,(等式3)那种形式不再适用(因为h变化)。通过分割平板成许多窄的水平带形条,我们可以建立黎曼和,其极限就是对于垂直平面板侧面的流体力。其过程如下所述。

【建立模型】

变-深度公式
        假定我们想知道流体对于浸人比重为w 的流体中的垂直平板的一侧的作用力,为求得这个力,我们把平板建模成xy平面里从 y = a 延伸到 y = b 的一个区域 (图 6)。

        我们按通常的方式分割 [a, b],并且设想区域被在分点处垂直于 y 轴的平面切成了水平条。从 y 到 y + Δy 的典型条是 Δy 个单位宽乘 L(y)个单位长 。我们假定 L(y) 是 y 的连续函数。

        ​​​​​​​        ​​​​​​​        ​​​​​​​        

                                                                (图6)垂直平板示意图

        流体对于水平条形窄板的作用力大约是:

        从项部到底部穿越条形时压强发生变化。如果条形足够窄,压强将保持接近于窄条底边的值

w *(条形深度)。

        流体作用在条形窄平板一侧上的力将大约是:

对于整个平板的力将大约是:

                                                                    (等式4)

(等式4)中的和是 [a,b]上一个连续函数的黎曼和,我们期望在划分的模趋于零时近似程度会
改善。对于平板的力就是这些和的极限.


【问题结论】

作用在垂直平板流体力的积分
        假定垂直淹没在密度为 w 的流体内的平板在 y 轴上以 y = a 延伸到 y = b 。令 L(y)是水
平条在水平面,处沿平板表面从左到右的长度,则对于平板一侧流体的作用力是:

                                                                (等式5)


【题外话----波士顿甜到忧伤】

糖蜜以每小时56公里的时速卷起8米高的巨浪,穿梭在街道间的空隙中,直接冲击和铺压一切对它造成阻碍的物体

高温让涌出来的糖蜜融化,粘度也有所降低,所以它流体性质越强,得以快速扩散。等到速度放缓,落到“障碍物”上之后,糖蜜也逐渐得到冷却。这时它的粘度急剧增加,紧紧粘住撞击到的物体或地面。

如果人不幸地被被糖蜜洪水包围,而且在身上冷却凝固,也就封锁了外界,窒息而死了。残酷的景象犹如活生生把人做成活体标本,固定在糖浆做的湖泊中。

                                                                       (图7)

有人认为,当天异常的高温诱发糖蜜罐炸裂的重要诱因。在高温下,糖蜜罐中的大量糖蜜会自发发酵生成乙醇,其中包括副产物二氧化碳的产生。二氧化碳气体不断膨胀,而储存罐的体积有限。当达到极限之后气体撑破糖蜜罐发生爆裂,成吨的糖蜜也因此涌出来。

这场灾难祸及全城,最直接的问责对象落在了美国工业乙醇公司的头上。禁酒令将近,公司为了谋求更大的利益,也是把储存罐物尽其用。

有居民举报说,其实存储的容量已经超过了限额,存在极大的风险。实际上确实是乙醇公司该背起这个锅,但背锅原因主要是储存罐的建筑质量不过关

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值