【学习笔记】【机器学习】第1章——绪论

第1章 1

1.1 引言 1

本书用模型泛指从数据中学得的结果。

1.2 基本术语 2

  • 数据集:记录的集合
  • 样本(示例):每条记录是关于一个事件或对象的描述
  • 特征(属性):反映事件或对象在某方面的表现或性质的事项
  • 属性值:属性的取值
  • 属性空间(样本空间):属性张成的空间
  • 特征向量:示例
  • 维数:属性描述的个数
  • 学习(训练):从数据中学得模型
  • 训练数据、训练样本、训练集:训练过程中使用的数据、其中每个样本、训练样本组成的集合
  • 假设:学得模型对应了关于数据的某种潜在的规律
  • 泛化能力:学得模型适用于新样本的能力

基本术语有很多,在学完后做几个项目会对这些术语有更全面的认识。

1.3 假设空间 4

西瓜数据集:
在这里插入图片描述
假设空间:所有假设组成的集合
在这里插入图片描述
若“色泽”“根蒂”“敲声”分别有3、3、3中可能取值,假设空间规模大小为65:
( 3 + 1 ) × ( 3 + 1 ) × ( 3 + 1 ) + 1 = 65 \begin{aligned} (3+1)\times(3+1)\times(3+1)+1=65 \end{aligned} (3+1)×(3+1)×(3+1)+1=65

3+1的3为三个属性,1为全部属性(*),后面+1的1为空集。

版本空间:只保留了假设空间中与训练数据集中正例一致的假设,由这些正确的假设构成的集合称为版本空间
在这里插入图片描述
通过所给的西瓜数据集对假设空间进行筛选,就可以得到版本空间。

简单说,假设空间就是所有可能的情况,学习过程中通过训练集对其进行筛选得到版本空间。因此,要想判断的正确,就要全面、大量的训练,以排除更多假设空间中的错误假设。错误假设越少,剩下的假设越少,就越有可能是正确假设,我们判断的结果的正确概率越大。

如果还没有理解,可以参考以下的博客,有更加详细的例子:

1.4 归纳偏好 6

归纳偏好:机器学习算法在学习过程中对某种类型假设的偏好
训练集外误差:(公式1.1)
E o t e ( L a ∣ X , f ) = ∑ h ∑ x ∈ X − X P ( x ) I ( h ( x ) ≠ f ( x ) ) P ( h ∣ X , L a ) E_{o t e}\left(\mathfrak{L}_{a} | X, f\right)=\sum_{h} \sum_{\boldsymbol{x} \in \mathcal{X}-X} P(\boldsymbol{x}) \mathbb{I}(h(\boldsymbol{x}) \neq f(\boldsymbol{x})) P\left(h | X, \mathfrak{L}_{a}\right) Eote(LaX,f)=hxXXP(x)I(h(x)=f(x))P(hX,La)

其中 I ( ⋅ ) \mathbb{I}(·) I()是指示函数,若·为真取值1,否则取值0.
对所有可能的f按均匀分布对误差求和,有(公式1.2)
∑ f E o t e ( L a ∣ X , f ) = ∑ f ∑ h ∑ x ∈ X − X P ( x ) I ( h ( x ) ≠ f ( x ) ) P ( h ∣ X , L a ) = ∑ x ∈ X − X P ( x ) ∑ h P ( h ∣ X , L a ) ∑ f I ( h ( x ) ≠ f ( x ) ) = ∑ x ∈ X − X P ( x ) ∑ h P ( h ∣ X , L a ) 1 2 2 ∣ X ∣ = 1 2 2 ∣ X ∣ ∑ x ∈ X − X P ( x ) ∑ h P ( h ∣ X , L a ) = 2 ∣ X ∣ − 1 ∑ x ∈ X − X P ( x ) ⋅ 1 \begin{aligned} \sum_{f}E_{ote}(\mathfrak{L}_a\vert X,f) &= \sum_f\sum_h\sum_{\boldsymbol{x}\in\mathcal{X}-X}P(\boldsymbol{x})\mathbb{I}(h(\boldsymbol{x})\neq f(\boldsymbol{x}))P(h\vert X,\mathfrak{L}_a) \\ &=\sum_{\boldsymbol{x}\in\mathcal{X}-X}P(\boldsymbol{x}) \sum_hP(h\vert X,\mathfrak{L}_a)\sum_f\mathbb{I}(h(\boldsymbol{x})\neq f(\boldsymbol{x})) \\ &=\sum_{\boldsymbol{x}\in\mathcal{X}-X}P(\boldsymbol{x}) \sum_hP(h\vert X,\mathfrak{L}_a)\cfrac{1}{2}2^{\vert \mathcal{X} \vert} \\ &=\cfrac{1}{2}2^{\vert \mathcal{X} \vert}\sum_{\boldsymbol{x}\in\mathcal{X}-X}P(\boldsymbol{x}) \sum_hP(h\vert X,\mathfrak{L}_a) \\ &=2^{\vert \mathcal{X} \vert-1}\sum_{\boldsymbol{x}\in\mathcal{X}-X}P(\boldsymbol{x}) \cdot 1\\ \end{aligned} fEote(LaX,f)=fhxXXP(x)I(h(x)=f(x))P(hX,La)=xXXP(x)hP(hX,La)fI(h(x)=f(x))=xXXP(x)hP(hX,La)212X=212XxXXP(x)hP(hX,La)=2X1xXXP(x)1

公式1.2指出总误差与学习算法无关。(“没有免费的午餐”定理,简称NFL定理)

1.5 发展历程 10

讲述了机器学习的由来与发展过程,有兴趣的同学可以找一些课外资料深入了解。

1.6 应用现状 13

机器学习与多学科融合,不仅在信息科学中有重要地位,还具有一定的自然科学探索色彩。

习题 19

(有空慢慢补)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值