【考研数学】高等数学知识点整理——第一章 函数、极限、连续

本文介绍了函数的基本概念,包括函数的定义、性质、反函数、复合函数等,以及基本初等函数和初等函数的特性。此外,还概述了极限的概念及其在数学分析中的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 函数

1.1 函数的定义

  设 x x x y y y 是两个变量, D D D 是一个给定的数集,如果对于每个数 x ∈ D x∈D xD,变量 x x x 按照一定的法则总有一个确定的数值 y y y 与之对应,则称变量 y y y 是变量 x x x函数 ,记为

y = f ( x ) , x ∈ D y = f(x), x∈D y=f(x),xD

  其中 x x x 称为 自变量 y y y 称为 因变量 D D D 称为函数的 定义域 ,记作 D f D_f Df,即 D f = D D_f = D Df=D
  函数值 f ( x ) f(x) f(x) 的全体所构成的集合称为函数 f f f值域 ,记作 R f R_f Rf f ( D ) f(D) f(D),即

R f = f ( D ) = { y ∣ y = f ( x ) , x ∈ D } R_f = f(D) = \{y | y = f(x), x∈D\} Rf=f(D)={yy=f(x),xD}

(高等数学 第七版 上册 P3)

【注】函数概念有两个基本要素:定义域、对应规则(或称依赖关系),当两个函数的定义域与对应规则完全相同时,它们就是同一函数。

1.2 分段函数

  在自变量的不同变化范围中,对应法则用不同式子来表示的函数,通常称为 分段函数

【注】分段函数是一个函数,不能认为每一段是一个函数,也不是多个函数。

  常见的几种分段函数:

  绝对值函数

y = ∣ x ∣ = { − x , x < 0 x , x ≥ 0 y = |x| = \begin{cases} -x, & x<0 \\ x, & x\geq0 \end{cases} y=x={x,x,x<0x0

在这里插入图片描述

  定义域为 D = ( − ∞ , + ∞ ) D = (-\infty, +\infty) D=(,+) ,值域 R f = [ 0 , + ∞ ) R_f = [0, +\infty) Rf=[0,+),这函数称为 绝对值函数

  符号函数

y = s g n   x = { − 1 , x < 0 0 , x = 0 1 , x > 0 y = sgn \ x = \begin{cases} -1, & x<0 \\ 0, & x=0 \\ 1, & x>0 \end{cases} y=sgn x=1,0,1,x<0x=0x>0


在这里插入图片描述

  定义域为 D = ( − ∞ , + ∞ ) D = (-\infty, +\infty) D=(,+) ,值域 R f = { − 1 , 0 , 1 } R_f = \{-1, 0, 1\} Rf={1,0,1},这函数称为 符号函数 。对于任何实数 x x x,下列关系成立:

x = s g n x ⋅ ∣ x ∣ x = sgnx · |x| x=sgnxx

  取整函数

y = [ x ] y = [x] y=[x]


在这里插入图片描述

  设 x x x 为任一实数,不超过 x x x 的最大整数称为 x x x 的整数部分,记作 [ x ] [x] [x] 。定义域为 D = ( − ∞ , + ∞ ) D = (-\infty, +\infty) D=(,+) ,值域 R f = Z R_f = Z Rf=Z,图形称为 阶梯曲线 ,函数称为 取整函数

(高等数学 第七版 上册 P5)

【注】取整函数的基本不等式: x − 1 < [ x ] ≤ x x-1 < [x] \leq x x1<[x]x

1.3 函数的性质

1.3.1 有界性

  设函数 f ( x ) f(x) f(x) 的定义域为 D D D,数集 X ⊂ D X \subset D XD。若存在正数 M M M,使得 ∣ f ( x ) ∣ ≤ M |f(x)| \leq M f(x)M

对任一 x ∈ X x \in X xX 都成立,那么称函数 f ( x ) f(x) f(x) X X X有界 。如果这样的 M M M,不存在,就称函数 f ( x ) f(x) f(x) X X X无界 。容易证明,函数 f ( x ) f(x) f(x) X X X 上有界的充分必要条件是它在 X X X 上既有上界又有下界。

(高等数学 第七版 上册 P6)

1.3.2 单调性

  设函数 f ( x ) f(x) f(x) 的定义域为 D D D,数集 I ⊂ D I \subset D ID。如果对于区间 I I I 上任意两点 x 1 x_1 x1 x 2 x_2 x2,当 x 1 < x 2 x_1<x_2 x1<x2,恒有 f ( x 1 ) < f ( x 2 ) f(x_1) < f(x_2) f(x1)<f(x2)

那么称函数 f ( x ) f(x) f(x) 在区间 I I I 上是 单调增加 的;如果对于区间 I I I 上任意两点 x 1 x_1 x1 x 2 x_2 x2,当 x 1 < x 2 x_1<x_2 x1<x2,恒有 f ( x 1 ) > f ( x 2 ) f(x_1) > f(x_2) f(x1)>f(x2)

那么统称函数 f ( x ) f(x) f(x) 在区间 I I I 上是 单调减少 的。单调增加和单调减少的函数统称为 单调函数

(高等数学 第七版 上册 P7)

1.3.3 奇偶性

  设函数 f ( x ) f(x) f(x) 的定义域 D D D 关于原点对称。如果对于任一 x ∈ D x \in D xD f ( − x ) = f ( x ) f(-x) = f(x) f(x)=f(x)

恒成立,那么称 f ( x ) f(x) f(x)偶函数 。如果对于任一 x ∈ D x \in D xD f ( − x ) = − f ( x ) f(-x) = -f(x) f(x)=f(x)

恒成立,那么称 f ( x ) f(x) f(x)奇函数

  偶函数的图形关于 y轴 是对称的,奇函数的图形关于 原点 是对称的。

(高等数学 第七版 上册 P7)

1.3.4 周期性

  设函数 f ( x ) f(x) f(x) 的定义域 D D D 关于原点对称。如果存在一个整数 l l l,式得对于任一 x ∈ D x \in D xD ( x ± l ) ∈ D (x \pm l) \in D (x±l)D,且 f ( x + l ) = f ( x ) f(x+l) = f(x) f(x+l)=f(x)

恒成立,那么称 f ( x ) f(x) f(x)周期函数 l l l 称为 f ( x ) f(x) f(x)周期 ,通常我们说周期函数的周期是指 最小正周期 。并非每个周期函数都有最小正周期,比如狄利克雷(Dirichlet)函数。

(高等数学 第七版 上册 P9)

1.4 反函数

  设函数 y = f ( x ) y = f(x) y=f(x) 的定义域是 X X X,值域是 Y Y Y。如果对于 Y Y Y内的每一个 Y Y Y,由 y = f ( x ) y = f(x) y=f(x) 可以确定唯一的 x ∈ X x \in X xX。这样在 Y Y Y 上定义了一个函数,称为 y = f ( x ) y = f(x) y=f(x)反函数 ,记为 x = f − 1 ( y ) x = f^{-1}(y) x=f1(y) x = φ ( y ) x = \varphi(y) x=φ(y) y ∈ Y y \in Y yY。有时也写成 y = f − 1 ( x ) y = f^{-1}(x) y=f1(x)

  由反函数的定义,有 y ≡ f ( f − 1 ( y ) ) y \equiv f(f^{-1}(y)) yf(f1(y)) y ∈ Y y \in Y yY x ≡ f − 1 ( f ( x ) ) x \equiv f^{-1}(f(x)) xf1(f(x)) x ∈ X x \in X xX


在这里插入图片描述

  若 f f f 是定义在 D D D 的单调函数, f f f 的反函数 f − 1 f^{-1} f1 必定存在,而且容易证明 f − 1 f^{-1} f1 也是 f ( D ) f(D) f(D) 上的单调函数。在同一坐标系, y = f ( x ) y = f(x) y=f(x) 与它的反函数 x = f − 1 ( y ) x = f^{-1}(y) x=f1(y) 的图形是一致的,而 y = f ( x ) y = f(x) y=f(x) 与它的反函数 y = f − 1 ( x ) y = f^{-1}(x) y=f1(x) 的图形关于直线 y = x y = x y=x 对称。

(高等数学 第七版 上册 P9)

1.5 复合函数

  设函数 y = f ( u ) y = f(u) y=f(u) 的定义域为 D f D_f Df,函数 u = g ( x ) u = g(x) u=g(x) 的定义域为 D g D_g Dg,且其值域 R g ⊂ D f R_g \subset D_f RgDf,则由下式确定的函数 y = f [ g ( x ) ] , x ∈ D g y = f[g(x)],x \in D_g y=f[g(x)]xDg

称为由函数 u = g ( x ) u = g(x) u=g(x) 与函数 y = f ( u ) y = f(u) y=f(u) 构成的 复合函数 ,它的定义域为 D g D_g Dg,变量 u u u中间变量

(高等数学 第七版 上册 P10)

1.6 基本初等函数

  • 幂函数: y = x μ y = x^{\mu} y=xμ μ ∈ R \mu \in R μR 是常数)
  • 指数函数: y = a x y = a^{x} y=ax a > 0 a > 0 a>0 a ≠ 1 a \neq 1 a=1
  • 对数函数: y = log ⁡ a x y = \log_a x y=logax a > 0 a > 0 a>0 a ≠ 1 a \neq 1 a=1
  • 三角函数:如 y = sin ⁡ x , y = cos ⁡ x , y = tan ⁡ x y = \sin x,y = \cos x,y = \tan x y=sinx,y=cosx,y=tanx
  • 反三角函数:如 y = arcsin ⁡ x , y = arccos ⁡ x , y = arctan ⁡ x y = \arcsin x,y = \arccos x,y = \arctan x y=arcsinx,y=arccosx,y=arctanx

  以上者五类函数统称为 基本初等函数

(高等数学 第七版 上册 P12)

1.7 初等函数

  由常数和基本初等函数经过有限次的四则运算和有限次的函数复合步骤所构成并可用一个式子表示的函数,称为 初等函数

  • 双曲正弦函数 sh ⁡ x = e x − e − x 2 \sh x = \frac{e^x-e^{-x}}{2} shx=2exex
  • 双曲余弦函数 ch ⁡ x = e x + e − x 2 \ch x = \frac{e^x+e^{-x}}{2} chx=2ex+ex
  • 双曲正切函数 th ⁡ x = sh ⁡ x ch ⁡ x = e x − e − x e x + e − x \th x = \frac{\sh x}{\ch x} = \frac{e^x-e^{-x}}{e^x+e^{-x}} thx=chxshx=ex+exexex
  • 反双曲正弦函数 y = a r s h   x = ln ⁡ ( x + x 2 + 1 ) y = arsh \ x = \ln (x+\sqrt{x^2+1}) y=arsh x=ln(x+x2+1 )
  • 反双曲余弦函数 y = a r c h   x = ln ⁡ ( x + x 2 − 1 ) y = arch \ x = \ln (x+\sqrt{x^2-1}) y=arch x=ln(x+x21 )
  • 反双曲正切函数 y = a r t h   x = 1 2 ln ⁡ 1 + x 1 − x y = arth \ x = \frac{1}{2} \ln \frac{1+x}{1-x} y=arth x=21ln1x1+x

(高等数学 第七版 上册 P12)

2 极限

(未完待续)

附录

考试内容

  • 函数的概念及表示法
  • 函数的有界性、单调性、周期性和奇偶性
  • 复合函数、反函数、分段函数和隐函数
  • 基本初等函数的性质及其图形
  • 初等函数
  • 函数关系的建立
  • 数列极限与函数极限的定义及其性质
  • 函数的左极限和右极限
  • 无穷小量和无穷大量的概念及其关系
  • 无穷小量的性质及无穷小量的比较
  • 极限的四则运算
  • 极限存在的两个准则:单调有界准则和夹逼准则
  • 两个重要极限:
    lim ⁡ x → 0 sin ⁡ x x = 1 , lim ⁡ x → + ∞ ( 1 + 1 x ) x = e \displaystyle\lim_{x \rightarrow 0}\frac{\sin x}{x} = 1,\displaystyle\lim_{x \rightarrow + \infty}\left(1 + \frac{1}{x}\right)^x = e x0limxsinx=1,x+lim(1+x1)x=e
  • 函数连续的概念
  • 函数同断点的类型
  • 初等函数的连续性
  • 闭区间上连续
  • 函数的性质

考试要求

1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.

2.了解函数的有界性、单调性、周期性和奇偶性.

3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.

4.掌握基本初等函数的性质及其图形,了解初等函数的概念.

5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左
极限、右极限之间的关系.

6.掌握极限的性质及四则运算法则.

7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限
求极限的方法.

8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无
穷小量求极限.

9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.

10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值