搭建GRU-ODE

本文介绍了如何基于GRU(GatedRecurrentUnit)构建GRU-ODE模型,通过论文和代码展示了如何将差分方程应用于神经网络单元,以及如何在PyTorch中实现GRUODECell。重点在于GRU单元的内部结构和其在处理序列数据时的优势。
摘要由CSDN通过智能技术生成

为了搭建这种架构,首先需要对GRU内部进行了解,
在这里插入图片描述来源论文Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling。
在这里插入图片描述
GRU的每个递归单元都可以自适应地捕获不同时间尺度的依赖关系,使用门控单元用于调制单元内部的信息流且没有单独的存储单元。

通过论文GRU-ODE-Bayes 及其源码,我门可以得到一个GRUODE 单元的思路和实现如下:
对于GRU相邻间隔时间的差分方程为
在这里插入图片描述
从而可以得到如下的ODE:
在这里插入图片描述

,代码为:

class GRUODECell(torch.nn.Module):
    def __init__(self, input_size, hidden_size, bias=True):
        super().__init__()

        #self.lin_xh = torch.nn.Linear(input_size, hidden_size, bias=bias)
        #self.lin_xz = torch.nn.Linear(input_size, hidden_size, bias=bias)
        #self.lin_xr = torch.nn.Linear(input_size, hidden_size, bias=bias)

        self.lin_x = torch.nn.Linear(input_size, hidden_size * 3, bias=bias)

        self.lin_hh = torch.nn.Linear(hidden_size, hidden_size, bias=False)
        self.lin_hz = torch.nn.Linear(hidden_size, hidden_size, bias=False)
        self.lin_hr = torch.nn.Linear(hidden_size, hidden_size, bias=False)

    def forward(self, x, h):
        xr, xz, xh = torch.chunk(self.lin_x(x), 3, dim=1)
        r = torch.sigmoid(xr + self.lin_hr(h))
        z = torch.sigmoid(xz + self.lin_hz(h))
        u = torch.tanh(xh + self.lin_hh(r * h))
        dh = (1 - z) * (u - h)
        return dh

待进一步更新。。。。

  • 8
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
使用 Keras-GPU 搭建 CNN-GRU-Attention 模型: 首先导入必要的库: ``` import numpy as np import pandas as pd import keras.backend as K from keras.models import Model from keras.layers import Input, Dense, Embedding, Conv1D, MaxPooling1D, GRU, Bidirectional, TimeDistributed, Flatten, Dropout, Lambda ``` 接着加载数据: ``` # 加载数据 data = pd.read_csv('data.csv') # 分割特征和标签 X = data.iloc[:, :-1].values y = data.iloc[:, -1].values # 将标签转换为one-hot编码 y = pd.get_dummies(y).values ``` 构建模型: ``` def cnn_gru_att(): input_layer = Input(shape=(X.shape[1],)) # embedding层 emb = Embedding(input_dim=VOCAB_SIZE, output_dim=EMB_SIZE)(input_layer) # CNN层 conv1 = Conv1D(filters=64, kernel_size=3, activation='relu', padding='same')(emb) pool1 = MaxPooling1D(pool_size=2)(conv1) conv2 = Conv1D(filters=128, kernel_size=3, activation='relu', padding='same')(pool1) pool2 = MaxPooling1D(pool_size=2)(conv2) conv3 = Conv1D(filters=256, kernel_size=3, activation='relu', padding='same')(pool2) pool3 = MaxPooling1D(pool_size=2)(conv3) # GRUgru = Bidirectional(GRU(units=128, return_sequences=True))(pool3) # Attention层 attention = TimeDistributed(Dense(1, activation='tanh'))(gru) attention = Flatten()(attention) attention = Lambda(lambda x: K.softmax(x))(attention) attention = RepeatVector(256)(attention) attention = Permute([2, 1])(attention) # 加权求和 sent_representation = Multiply()([gru, attention]) sent_representation = Lambda(lambda xin: K.sum(xin, axis=-2), output_shape=(256,))(sent_representation) # 全连接层 fc1 = Dense(units=256, activation='relu')(sent_representation) fc2 = Dense(units=128, activation='relu')(fc1) output_layer = Dense(units=NUM_CLASSES, activation='softmax')(fc2) model = Model(inputs=input_layer, outputs=output_layer) return model ``` 使用 PyTorch 搭建 CNN-GRU-Attention 模型: 首先导入必要的库: ``` import torch import torch.nn as nn import torch.nn.functional as F ``` 接着定义模型: ``` class CNN_GRU_ATT(nn.Module): def __init__(self, vocab_size, emb_size, num_filters, kernel_sizes, hidden_size, num_classes, dropout_rate): super(CNN_GRU_ATT, self).__init__() # embedding层 self.embedding = nn.Embedding(vocab_size, emb_size) # CNN层 self.convs = nn.ModuleList([nn.Conv1d(in_channels=emb_size, out_channels=num_filters, kernel_size=ks) for ks in kernel_sizes]) # GRU层 self.gru = nn.GRU(input_size=num_filters*len(kernel_sizes), hidden_size=hidden_size, bidirectional=True, batch_first=True) # Attention层 self.attention_layer = nn.Linear(hidden_size*2, 1) # 全连接层 self.fc1 = nn.Linear(hidden_size*2, hidden_size) self.fc2 = nn.Linear(hidden_size, num_classes) # Dropout层 self.dropout = nn.Dropout(dropout_rate) def forward(self, x): # embedding层 embedded = self.embedding(x) # CNN层 conv_outputs = [] for conv in self.convs: conv_output = F.relu(conv(embedded.transpose(1, 2))) pooled_output = F.max_pool1d(conv_output, conv_output.size(2)).squeeze(2) conv_outputs.append(pooled_output) cnn_output = torch.cat(conv_outputs, dim=1) # GRUgru_output, _ = self.gru(cnn_output.unsqueeze(0)) gru_output = gru_output.squeeze(0) # Attention层 attention_weights = F.softmax(self.attention_layer(gru_output), dim=0) attention_output = (gru_output * attention_weights).sum(dim=0) # 全连接层 fc1_output = self.dropout(F.relu(self.fc1(attention_output))) fc2_output = self.fc2(fc1_output) return fc2_output ``` 以上是使用 Keras-GPU 和 PyTorch 搭建 CNN-GRU-Attention 模型的示例代码,需要根据具体的任务修改模型参数和数据处理方式。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值