卷积神经网络
1、卷积的概念
卷积的概念:卷积可以认为是一种有效提取图像特征的方法。一般会用一个正方形的卷积核,按指定步长,在输入特征图上滑动,遍历输入特征图中的每个像素点。每一个步长, 卷积核会与输入特征图出现重合区域,重合区域对应元素相乘、求和再加上偏置项得到输出特征的一个像素点,如下图所示。

对于彩色图像(多通道)来说,卷积核通道数与输入特征一致,套接后在对应位置上 进行乘加和操作,如图 所示,利用三通道卷积核对三通道的彩色特征图做卷积计算。

用多个卷积核可实现对同一层输入特征的多次特征提取,卷积核的个数决定输出层的通道(channels)数,即输出特征图的深度。
2、感受野的概念
感受野(Receptive Field)的概念:卷积神经网络各输出层每个像素点在原始图像上的映射区域大小。如下图所示。
本文详细介绍了卷积神经网络(CNN)的基本概念,包括卷积、感受野、全零填充,以及在Tensorflow中如何描述卷积层,涉及到批标准化(BN)、池化和Dropout等技术。并通过一个简单的CNN实现CIFAR10数据集分类,展示了CNN在计算机视觉任务中的应用。
订阅专栏 解锁全文
1185

被折叠的 条评论
为什么被折叠?



