P26~27 self-supervised learning

supervised即有监督的ML,需要提供样本供model学习,然后对一个新的问题进行输出

而self-supervised则是一开始连样本都不提供,不给标注,没有label,自己想办法做supervised

 

如图,假设我们现在只有一堆文章x,没有标注

我们想办法把这些文字分成两部分,一部分用于模型的输入x',另一部分用于模型的标注x''

通过输出y,拿y和label x''进行比较,越接近越好

 老师这里解释了为什么不叫unsupervised

可以将unsupervised和self-supervised看成两个集合A和B

则A的范围大于B,且A囊括了B

因为self-supervised只是unsupervised的其中一种

以BERT为例

BERT一般用于NLP,当然其他用途也可以,只不过一开始是用于NLP的

第一个涉及的是masking input

 

先随机的掩盖字,然后再决定怎么mask,mask的方法有

第一个可以采用使用特殊符号进行标记

第二个可以将该字随机的替换为其他的字

将掩盖处理后的句子经BERT进行输出,得到另外一个句子

掩盖部分所对应的输出得到一个向量,将该向量转换成一个矩阵,再进行softmax得到一组分布

该例子中得到湾的概率最大,所以BERT学习到湾这个字适合这里

BERT要做的就是要成功预测被掩盖的部分所属的类别

第二个涉及的是next sentence prediction

看两个句子是否接在一起

这个用处有文献说不大 ,稍微复杂一点的SOP文献说的比较少

 

 实际上BERT学到的是怎么做一个填空题,不过BERT可以被用来处理downstream tasks

这些tasks可以看起来与BERT无关

BERT就有点类似干细胞,后面可以分化成其他细胞来处理其他任务

那么我们如何使用BERT呢,老师举了3个例子

case1 情感分析

 该例子的BERT对应4个输入,也同时会产生4个输出,但我们只看CLS 

对CLS的输出向量乘以linear transformer矩阵,老师这个地方省略了一个softmax,然后输出类别

(这里需要有标注资料,BERT没有办法凭空去解决情感分析问题) 

case2 POS tagging

 输出和输入的长度相等,这个case是来判断输入每个词的词性

同样的也是提前需要一些label

case3 NLI

输入两个句子,让model来判断这两个句子是否有关

本例中 premise是一个人骑马跳过一架飞机,假设是这个人再一个小餐馆

明显无关,所以分类结果输出为 矛盾 

还是只看CLS,看他的class 

可以延申的用法为   一篇文章 +若干评论

用model来判断  评论与该文章的立场,赞成or反对

 如果说BERT是填空,那么GPT就是预测

 后面老师课堂上都是一些扩展,没有细讲就不写出来了

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值