P23~25 Finetune VS Prompt (不推荐看)

文章讨论了GPT与BERT的区别,以及如何通过adapter技术将模型转化为专才或通才。提到了in-contextlearning和instruction-tuning作为增强模型能力的方法,同时引入CoT(ChainofThought)策略以提高推理能力。文章还探讨了自然语言处理模型的优化路径。
摘要由CSDN通过智能技术生成

 

chatGPT走的通才的路线

 语言模型比较知名的有GPT和BERT

不同点在于,GPT玩的是文字接龙,而BERT玩的是文字填空

 

 Bert通常都是在期待1的情况下使用,我们通过改造将其发展成为一个专才

 

 

adapter看作插件就行,但是插在哪里合适得自己找 

对于专才来说,如果有100个任务就要有100个大模型

但引入adapter之后我们可以在一个大模型的基础上加100个插件

 如何让机器进一步成为一个通才呢

in-context learning  给模型例子(问题的描述),通过例子来学习,不过效果有点玄学

instruction-tuning  给机器训练时看各种各样的指示(范例),然后看人给机器指令后做出的回应

 CoT的思路是在给出范例的时候顺便给出推论的一些过程,期待看到新问题时,能自己写成推论过程再写出答案

这几节课有很多这样的图表,看的一知半解的 

 还有另一种将问题分解简化 的方法

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值