chatGPT走的通才的路线
语言模型比较知名的有GPT和BERT
不同点在于,GPT玩的是文字接龙,而BERT玩的是文字填空
Bert通常都是在期待1的情况下使用,我们通过改造将其发展成为一个专才
adapter看作插件就行,但是插在哪里合适得自己找
对于专才来说,如果有100个任务就要有100个大模型
但引入adapter之后我们可以在一个大模型的基础上加100个插件
如何让机器进一步成为一个通才呢
in-context learning 给模型例子(问题的描述),通过例子来学习,不过效果有点玄学
instruction-tuning 给机器训练时看各种各样的指示(范例),然后看人给机器指令后做出的回应
CoT的思路是在给出范例的时候顺便给出推论的一些过程,期待看到新问题时,能自己写成推论过程再写出答案
这几节课有很多这样的图表,看的一知半解的
还有另一种将问题分解简化 的方法