前言
仿照论文《“数据+AI”双向赋能机制与农业领域实践》写的针对婴幼儿的AI训练服务架构图。

介绍
本建设方案遵循 “数据层 - 处理层 - 模型层 - 应用层” 四层架构逻辑,构建完整高效的 AI 服务体系:
-
数据层:作为核心支撑底座,整合托育领域政策文件、技能标准、科学养育指南、机构证照信息等海量资源,同时收集网站论坛等热点信息,为 AI 模型训练与应用提供坚实的数据基础和理论依据;
-
处理层:聚焦数据质量把控与价值挖掘,通过数据治理、关键词提取、实体识别等系列处理流程,有效降低模型幻觉风险,持续提升数据可信度与可用性,进而保障模型回复的精准性,筑牢用户对 AI 服务的信任基石;
-
模型层:依托处理层高质量知识资产,基于 RAG 技术、多模态处理、强化学习等技术,完成模型与托育问答、质量评估、政策咨询等下游任务适配,通过智能体应用编排形成工作流,高效响应用户需求;
-
应用层:聚焦用户便捷交互体验,打造清晰简洁、易用性强的 UI 界面,将智能问答、政策检索等服务精准呈现于智慧托育平台各子系统,实现 AI 能力与用户需求的直观对接。
建设方案
1. 数据层
本层明确数据来源,具体包括三类资源:
-
开放资源:从网站、论坛等渠道收集的托育相关数据;
-
政务资源:托育相关政策文件、法律法规等;
-
托育机构资源:托育机构的场地、设施、玩具等相关信息。
2. 处理层
本层分为两部分,具体建设内容如下:
第一部分
对收集的文本数据、图片数据、音频数据进行数据挖掘,同时清除特殊符号、停用词等冗余信息,提升数据纯净度。
第二部分
(1)托育行业语义知识库构建
基于语义网络(如知识图谱)与本体论搭建结构化知识系统,核心以 “概念 - 属性 - 关系 - 实例” 逻辑组织信息。数据来源涵盖政策文件、操作规范等非结构化文本,数据报表等结构化数据,以及多模态数据;同时保留原始数据作为 “溯源凭证”(如智能问答答案可直接关联原始政策文献片段),确保知识可追溯。
结合托育行业知识关联特点与实际需求,搭建多层次领域本体语义模型:确立 “医育结合” 顶层本体,细分出托育行业、从业人员等应用本体,在此基础上可进一步构建知识图谱。目前正推进知识实体定义与关联规则建立工作,未来该知识库可作为外接补充库,为托育知识大模型的开发训练与升级迭代提供关键支持。
(2)高质量语料知识库建设
为支撑托育智能模型开发、算法设计研发及大模型训练优化,从数据层精准筛选并深度加工高价值、高行业特色的数据资源,具体涵盖政策全文碎片化内容、托育从业人员技能标准数据等信息。同时针对文本、图表、音频等多模态数据开展实体标注、对象显性化处理等深加工,形成结构化、规范化的优质语料,为托育 AI 模型的深度学习训练与场景建模提供坚实数据支撑。
在此基础上,通过 “微调优化 + 提示工程 + 检索生成增强(RAG)” 等核心技术手段,将高质量语料转化为模型训练输入,赋能托育 AI 大模型能力迭代与性能升级,最终为智慧托育平台下游的智能化知识问答、交互内容生成等服务提供稳定、高效的语料支持,保障用户对于 AI 的信任程度。
3. 模型层
在高质量基础知识建设的基础上,本建设方案构建了覆盖上游数据融汇治理、中游知识语义计算、下游知识服务应用的全链条智能计算体系。一方面,依托通用成熟的深度学习、知识挖掘等算法,实现托育领域数据的自动化标注,通过精准的数据预处理与质量把控,为智能计算环节提供更优质、高效的数据资源支撑,夯实体系运行基础;另一方面,以多元多层次的高质量数据为反向驱动力,支撑托育领域智能技术的应用创新与迭代发展,推动算法与场景的深度适配。通过这一 “数据驱动 AI 决策、AI 反哺数据优化” 的双向赋能范式,既保障数据资源的高质量与高可控性,为全链条智能计算体系筑牢根基,又能高效协同上游、中游、下游各环节,共同支撑智慧托育服务的落地应用,实现业务价值与数据价值的同步提升。
(1)数据融汇治理体系
围绕托育数据资源 “产生 - 流转 - 应用 - 迭代” 的全生命周期管理需求,本方案研发集 “数据梳理 - 多源采集 - 安全存储 - 规范管理 - 高效利用” 于一体的托育大数据知识仓储中转系统。通过采用数据治理、分布式存储及资源调度技术,实现托育领域数据资产集中管控、动态监测与统一调度,既保障数据资产的完整性、安全性与可追溯性,又能提升数据资源的流转效率与复用价值,为智慧托育全链条业务应用提供稳定、高效的数据中枢支撑。
(2)智能计算体系
围绕场景应用需求,利用大语言模型开发命名实体与知识抽取技术、多粒度知识对象标引工具、大规模图数据管理与协同构建系统等,解决从数据到知识所面临的 “异构鸿沟”“语义鸿沟”“应用鸿沟” 等问题。
(3)智能服务体系
依托大语言模型、检索增强生成(RAG)及向量数据库技术,结合知识图谱外部知识库,精准响应托育场景下的需求。
在技术部署层面,基于 Spring Cloud 微服务架构设计模型即服务(MaaS)容器化方案,将各类模型、数据及知识工具定制为组件化、可插拔模块,以低连接、低耦合方式部署。这种 “搭积木式” 封装管理,既增强系统灵活性与通用性,又保障不同应用场景下服务的稳定性与可扩展性。
4. 应用层
该层为用户提供多样化服务应用,核心实现 “数据即服务(DaaS)”“知识即服务(KaaS)”“模型即服务(MaaS)” 的创新服务模式,通过标准化服务接口推动数据、知识与模型的深度融合,加速三者在托育业务场景中的推广应用。同时,服务运行过程中产生的动态数据将回流至数据融汇治理体系,反哺知识图谱的协同构建与更新,最终形成 “服务→模型→服务” 的闭环反馈机制,持续驱动托育 AI 服务能力迭代优化。
844

被折叠的 条评论
为什么被折叠?



