【leetcode】18. 四数之和

本文详细介绍了求解四数之和问题的算法,包括双指针法的实现和优化,降低时间复杂度从O(n^4)到O(n^3)。通过两层循环和双指针策略解决,同时提供了代码示例和思路分析,适用于解决寻找数组中四个元素相加等于特定目标值的问题。
摘要由CSDN通过智能技术生成

算法汇总

以下是所有算法汇总,包括GitHub源码地址链接:力扣算法练习汇总(持续更新…)

题目

18. 四数之和
在这里插入图片描述

题目字眼

1、不可重复

代码

1.两个for循环+双指针

思路

四数之和,和15.三数之和 (opens new window) 是一个思路,都是使用双指针法, 基本解法就是在15.三数之和 (opens new window)的基础上再套一层for循环

但是有一些细节需要注意,例如: 不要判断nums[k] > target 就返回了,三数之和 可以通过 nums[i] > 0 就返回了,因为 0 已经是确定的数了,四数之和这道题目 target是任意值。(大家亲自写代码就能感受出来)

15.三数之和 (opens new window)的双指针解法是一层for循环num[i]为确定值,然后循环内有left和right下标作为双指针,找到nums[i] + nums[left] + nums[right] == 0。

四数之和的双指针解法是两层for循环nums[k] + nums[i]为确定值,依然是循环内有left和right下标作为双指针,找出nums[k] + nums[i] + nums[left] + nums[right] == target的情况,三数之和的时间复杂度是 O ( n 2 ) O(n^2) O(n2),四数之和的时间复杂度是 O ( n 3 ) O(n^3) O(n3)

那么一样的道理,五数之和、六数之和等等都采用这种解法。

对于15.三数之和 (opens new window)双指针法就是将原本暴力 O ( n 3 ) O(n^3) O(n3)的解法,降为 O ( n 2 ) O(n^2) O(n2)的解法,四数之和的双指针解法就是将原本暴力 O ( n 4 ) O(n^4) O(n4)的解法,降为 O ( n 3 ) O(n^3) O(n3)的解法。

代码

class Solution {
    public List<List<Integer>> fourSum(int[] nums, int target) {
       List<List<Integer>> resultList = new ArrayList<>();
       if(nums == null || nums.length < 4){
           return resultList;
       }
       // 排序
       Arrays.sort(nums);

       for(int i = 0; i < nums.length; i++){
           if(i > 0 && nums[i - 1] == nums[i]){
               continue;
           }
           for(int j = i + 1; j < nums.length; j++){
               // 去重
               if(j > i +1 && nums[j - 1] == nums[j]){
                   continue;
               }
               int value = target - nums[i] - nums[j];
               int leftIndex = j + 1;
               int rightIndex = nums.length - 1;
               // 去重
               while(leftIndex < rightIndex){
                   if(nums[leftIndex] + nums[rightIndex] == value){
                       ArrayList<Integer> list = new ArrayList<>();
                       list.add(nums[i]);
                       list.add(nums[j]);
                       list.add(nums[leftIndex]);
                       list.add(nums[rightIndex]);
                       resultList.add(list);
                       // 去重
                       while(leftIndex < rightIndex && nums[leftIndex] == nums[leftIndex+1]){
                           leftIndex++;
                       }
                       while(leftIndex < rightIndex && nums[rightIndex] == nums[rightIndex-1]){
                           rightIndex--;
                       }
                       rightIndex--;
                       leftIndex++;
                   }else if(nums[leftIndex] + nums[rightIndex] > value){
                       rightIndex--;
                   }else if(nums[leftIndex] + nums[rightIndex] < value){
                       leftIndex++;
                   }
               }
           }
       }
       return resultList;
    }
}

时间和空间复杂度

时间复杂度是 O ( n 3 ) O(n^3) O(n3)

2.解题方法,如暴力法

思路

代码


时间和空间复杂度

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

@来杯咖啡

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值