三步实现【DeepSeek】本地部署,告别服务器崩溃的烦恼!

三步实现【DeepSeek】本地部署,告别服务器崩溃的烦恼!

前言

近年来,国产大模型DeepSeek备受关注,但随着用户访问量激增,频繁出现响应缓慢甚至系统宕机的现象,给使用者带来了一些不便。
幸运的是,DeepSeek作为开源模型,允许开发者通过本地部署来解决这一问题。将模型部署到本地后,用户无需依赖网络即可随时进行推理操作,不仅提升了使用体验,还大幅降低了对外部服务的依赖。
在这里插入图片描述

三步实现【DeepSeek】本地部署,告别服务器崩溃的烦恼!
1、安装ollama;
2、下载deepSeek模型;
3、下载可视化ai工具;

一:安装 Ollama

要在本地运行 DeepSeek,我们需要使用 Ollama——一个开源的本地大模型运行工具。
首先,访问 Ollama官网 下载该工具。官网提供了针对不同操作系统的安装包,用户只需选择适合自己电脑的版本即可。在本例中,我们选择下载适用于 Windows 操作系统的版本。
在这里插入图片描述

Ollama 安装包下载后双击install,安装速度还是比较快的**(注:直接安装到C盘)**
在这里插入图片描述

安装完成 Ollama 后,打开电脑的 CMD(命令提示符)。只需在电脑下方的搜索框中输入“cmd”并按回车,即可打开命令提示符窗口。输入**【ollama help】**
在这里插入图片描述

二:下载部署 Deepseek 模型

返回 Ollama官网 ,在网页上方的搜索框中输入 “DeepSeek-R1”,这是我们要在本地部署的模型。
在这里插入图片描述

点击 “DeepSeek-R1” 后,您将进入模型的详情页面,页面中会显示多个可选择的参数规模。每个参数规模代表了模型的不同大小和计算能力,从 1.5B 到 671B 不等。这里的 “B” 代表 “Billion”,即“十亿”,因此:
● 1.5B 表示该模型具有 15 亿个参数,适合轻量级任务或资源有限的设备使用。
● 671B 则代表该模型拥有 6710 亿个参数,模型规模和计算能力都极为强大,适合大规模数据处理和高精度任务,但对硬件要求也相应更高。
在这里插入图片描述

选择不同的参数规模意味着你可以根据自己的硬件配置和应用需求,决定使用哪个版本的模型。较小的模型需要的计算资源较少,适合快速推理或硬件资源较弱的设备;而较大的模型则在处理复杂任务时具有更高的推理能力,但需要更多的内存和显存支持。
在这里插入图片描述

按下Win + X组合键或搜索“设备管理器”,展开“显示适配器”类别,可以看到已安装的显卡型号。如果需要更详细的信息,可以右键点击显卡名称,选择“属性”查看详细信息;我的是【RTX 3050】稳妥点下载1.5B
在这里插入图片描述

选择好模型规模后,复制右边的一个命令。【ollama run deepseek-r1:1.5b】
在这里插入图片描述

复制命令后,回到命令提示符窗口,将刚刚复制的命令粘贴进去,并按回车键即可开始下载模型。【下载大概1小时左右,有点慢】
在这里插入图片描述

模型下载完成后,您可以直接在命令提示符窗口中使用它,开始进行推理操作。
在这里插入图片描述

以后如果我们需要再次使用 DeepSeek 模型,只需打开命令提示符窗口,直接输入之前复制的指令,按回车即可重新启动模型并进行推理操作。【ollama run deepseek-r1:1.5b】(1.5b有点不够智能,模型数量不够)
在这里插入图片描述

三:可视化图文交互界面 Chatbox

虽然我们可以在本地使用 DeepSeek 模型,但其默认的命令行界面较为简陋,很多用户可能不太习惯。为了提供更直观的交互体验,我们可以使用 Chatbox 这个可视化的图文界面来与 DeepSeek 进行交互。
只需访问 Chatbox 官网,在这里,你可以选择使用其本地客户端,或者直接通过网页版进行操作,享受更友好的使用体验。
在这里插入图片描述

进入 Chatbox 网页版本后,点击“使用自己的 API Key 或本地模型”选项。这将允许你连接到自己本地的 DeepSeek 模型或通过 API Key 访问外部服务。
在这里插入图片描述

这里需要注意的是,为了能够 Ollama 能远程链接,这里我们最好看一下 【如何将 Chatbox 连接到远程 Ollama 服务:逐步指南】的教程,根据这个教程操作一下。一般无需配置
如果你使用的是 window的PC应用【pc端下载过程不展示了下载就行
在这里插入图片描述

只需要配置相应的环境变量即可。配置好环境变量后,需要重启 Ollama 程序以使设置生效。
在这里插入图片描述在这里插入图片描述

重启 Ollama 程序后,返回到 Chatbox 设置界面,关闭当前的设置窗口,然后重新打开它。在重新打开后,你就能在界面中选择已经部署好的 DeepSeek 模型了。选择模型后,点击保存即可开始使用。
在这里插入图片描述

接下来,只需在 Chatbox 中新建对话即可开始使用 DeepSeek 模型。以下图为例,您可以看到上方是模型的思考过程,下方则是模型给出的答案。
在这里插入图片描述

总结

通过本文提供的三步教程——安装Ollama工具、下载DeepSeek模型、配置可视化的Chatbox界面,用户可以轻松实现本地部署。尤其是Chatbox的图文交互界面,不仅让操作变得更加直观和友好,也使得模型的使用变得更加高效。
无论是普通用户,还是开发者,采用本地部署的方式都能避免服务器崩溃带来的麻烦,并且可以根据自己的硬件条件选择合适的模型版本,灵活应对不同的任务需求。
总的来说,本地部署不仅是解决DeepSeek响应慢和系统宕机问题的有效方法,还为用户提供了更加稳定、便捷的使用体验。如果你也在使用DeepSeek,或者正在考虑部署类似的模型,按照这篇指南进行操作,将会大大提升你的工作效率,告别频繁的宕机和不稳定的服务,带来更顺畅的体验。

### 部署 Deep Seek 的本地环境设置 为了在本地环境中成功部署 Deep Seek,需遵循一系列配置步骤来确保所有依赖项正确安装并运行。虽然具体细节可能因版本不同而有所变化,但一般过程涉及以下几个方面: #### 准备工作 确保计算机满足最低硬件需求,并已安装必要的软件包和库文件。对于大多数机器学习项目而言,Python 是主要编程语言之一,因此建议先确认 Python 版本是否合适。 #### 安装依赖项 使用虚拟环境可以有效管理项目的依赖关系,防止与其他全局安装的应用程序发生冲突。创建一个新的虚拟环境后,按照官方文档中的说明安装所需的 Python 库和其他工具[^1]。 ```bash # 创建并激活虚拟环境 (以 Linux/macOS 为例) python3 -m venv deepseek-env source deepseek-env/bin/activate # 更新 pip 并安装依赖项 pip install --upgrade pip pip install -r requirements.txt ``` #### 下载模型权重 许多深度学习框架允许用户下载预训练好的模型参数,这有助于加速开发进程。如果 Deep Seek 支持此功能,则应根据指南获取相应的模型文件。 #### 启动服务端口 完成上述准备工作之后,可以通过命令行启动应用程序的服务端口。此时应该能够访问 API 接口来进行测试请求。 ```bash # 假设有一个名为 app.py 的入口脚本 python app.py ``` #### 测试连接 最后一步是在浏览器或其他 HTTP 客户端中尝试发送简单的 GET 或 POST 请求给新搭建起来的服务器实例,验证其响应情况。正常情况下应当返回预期的结果集或状态码。
评论 15
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值