可以先逐层求字符内容
def findKthInRow(n, k):
# 第一行只有一个字符'0'
row = '0'
# 对于每一行,从第二行到第n行
for _ in range(1, n):
# 新行初始化为空字符串
newRow = ''
# 遍历当前行的每个字符
for char in row:
# 如果当前字符是'0',按规则替换为'01'
if char == '0':
newRow += '01'
# 如果当前字符是'1',按规则替换为'10'
else:
newRow += '10'
# 更新当前行为新生成的行
row = newRow
# 返回第n行的第k个字符
# 注意,字符串索引从0开始,而题目中k是从1开始的,因此需要减1
return row[k-1]
# 示例:查找第3行的第4个字符
print(findKthInRow(3, 4))
比如有个4行的,那么就是
0
01
0110
01101001
找递归的终止条件,递归主体,子问题
终止条件:n=1,值为0
也就是每一层的任意字符都可以被第一层的0推导而来。
同时可以观察当前层是由上一层组成了前半部分,由前半部分的反转组成后半部分。
递归主体:检查k是否在当前行的前半部分,如果在,那么其值与上一行的位置相同;
否则,位置就是区间翻转后的对称位置。
class Solution:
def kthGrammar(self, n: int, k: int) -> int:
# 递归终止条件:第一行只有一个0
if n == 1:
return 0
# 检查k是否在中间之后的位置
if k > 2 ** (n - 2):
# 如果在后半部分,找到对称位置的值并翻转
return 1 - self.kthGrammar(n - 1, k - 2 ** (n - 2))
else:
# 如果在前半部分,位置k的值与上一行相同
return self.kthGrammar(n - 1, k)
递归调用:通过递归,我们逐渐减小问题的规模,直到达到基本情况(n == 1)。
位置判断:通过比较k和2 ** (n - 2),我们可以确定k是在前半部分还是后半部分。注意,2 ** (n - 2)是前半部分的长度。
翻转逻辑:当k在后半部分时,我们需要找到它对应的前半部分的位置,并翻转结果。因为后半部分的每个元素都是前半部分对应元素的逆。