779. 第K个语法符号

可以先逐层求字符内容

def findKthInRow(n, k):
    # 第一行只有一个字符'0'
    row = '0'
    
    # 对于每一行,从第二行到第n行
    for _ in range(1, n):
        # 新行初始化为空字符串
        newRow = ''
        # 遍历当前行的每个字符
        for char in row:
            # 如果当前字符是'0',按规则替换为'01'
            if char == '0':
                newRow += '01'
            # 如果当前字符是'1',按规则替换为'10'
            else:
                newRow += '10'
        # 更新当前行为新生成的行
        row = newRow
    
    # 返回第n行的第k个字符
    # 注意,字符串索引从0开始,而题目中k是从1开始的,因此需要减1
    return row[k-1]

# 示例:查找第3行的第4个字符
print(findKthInRow(3, 4))

比如有个4行的,那么就是

0

01

0110

01101001

找递归的终止条件,递归主体,子问题
终止条件:n=1,值为0
也就是每一层的任意字符都可以被第一层的0推导而来。
同时可以观察当前层是由上一层组成了前半部分,由前半部分的反转组成后半部分。

递归主体:检查k是否在当前行的前半部分,如果在,那么其值与上一行的位置相同;
否则,位置就是区间翻转后的对称位置。

class Solution:
    def kthGrammar(self, n: int, k: int) -> int:

        # 递归终止条件:第一行只有一个0
        if n == 1:
            return 0
        
        # 检查k是否在中间之后的位置
        if k > 2 ** (n - 2):
            # 如果在后半部分,找到对称位置的值并翻转
            return 1 - self.kthGrammar(n - 1, k - 2 ** (n - 2))
        else:
            # 如果在前半部分,位置k的值与上一行相同
            return self.kthGrammar(n - 1, k)


递归调用:通过递归,我们逐渐减小问题的规模,直到达到基本情况(n == 1)。
位置判断:通过比较k和2 ** (n - 2),我们可以确定k是在前半部分还是后半部分。注意,2 ** (n - 2)是前半部分的长度。
翻转逻辑:当k在后半部分时,我们需要找到它对应的前半部分的位置,并翻转结果。因为后半部分的每个元素都是前半部分对应元素的逆。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

灵海之森

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值