第 4 章 Kafka Broker
4.1 Kafka Broker 工作流程
4.1.1 Zookeeper 存储的 Kafka 信息
(1)启动 Zookeeper 客户端。
bin/zkCli.sh
因为你在配置kafka的时候指定了它的名字。
(2)通过 ls 命令可以查看 kafka 相关信息。
[zk: localhost:2181(CONNECTED) 2] ls /kafka
zk中有一个节点 consumers 这个里面,老版本0.9版本之前,存放的是消费者的偏移量(offset,这次消费者消费到哪个地方了,下次从这个地方继续消费),新版本的根本没放在zk中,直接放在集群中了。
可以借助一个工具:漂亮的zoo,通过图形化界面查看zk中的消息。
4.1.2 Kafka Broker 总体工作流程
1)每一个broker上线时,会在zk中进行注册
2)每个broker中都有一个controller,controller会争先抢占zk中 controller节点的注册权,谁先抢到,谁选举时说了算。假如broker0中的controller中抢到了,那它就是说了算的人。该controller一直监听ids节点是否有挂掉的节点。
3)选举规则是:在ISR中存活为前提,按照AR中排在前面的优先,例如 ar[1,0,2] ,isr[1,0,2],那么Leader会按照1,0,2 进行顺序的轮询。
4)选举出来的新节点,注册到zk中,将信息记录在zk中。
5)其他contorller将zk中的信息同步下来。
6)假定broker中的leader挂掉了,会进行重新的选举。
7)客户端发送消息给Leader,Leader记录数据,落盘,形成Log,Log底层使用的是Segment,Segment底层每一个G,是一个单独的文件,1G内的数据要想查找迅速又分成了两个文件 log和index.
模拟 Kafka 上下线,Zookeeper 中数据变化
(1)查看/kafka/brokers/ids 路径上的节点。
[zk: localhost:2181(CONNECTED) 2] ls /kafka/brokers/ids
[0, 1, 2]
(2)停止 hadoop104 上的 kafka。
bin/kafka-server-stop.sh
(3)再次查看/kafka/brokers/ids 路径上的节点。
[zk: localhost:2181(CONNECTED) 3] ls /kafka/brokers/ids
[0, 1]
实操:将hadoop13停止掉,会重新选举,两次查看的对比图如下:
4.2 生产经验——节点服役和退役
4.2.1 服役新节点
1)新节点准备
(1)关闭 bigdata03,进行一个快照,并右键执行克隆操作。
(2)开启 bigdata04,并修改 IP 地址。
vi /etc/sysconfig/network-scripts/ifcfg-ens33
修改完记得重启网卡:
systemctl restart network
(3)在 bigdata04 上,修改主机名称为 bigdata04。
hostname bigdata04 # 临时修改
[root@bigdata04 ~]# vim /etc/hostname
bigdata04
还要记得修改 /etc/hosts文件,并进行同步
修改bigdata01的hosts 文件,修改完之后,记得同步一下
192.168.52.11 bigdata01
192.168.52.12 bigdata03
192.168.52.13 bigdata02
192.168.52.14 bigdata04
xsync.sh /etc/hosts
scp -r /etc/hosts root@bigdata04:/etc/
(4)重新启动 bigdata03、bigdata04。
(5)修改 bigdata04 中 kafka 的 broker.id 为 3。
进入bigdata04的kafka中,修改里面的配置文件 config/server.properties
(6)删除 bigdata04 中 kafka 下的 datas 和 logs。
rm -rf datas/* logs/*
(7)启动 bigdata01、bigdata02、bigdata03 上的 kafka 集群。
先启动zk集群
xcall.sh zkServer.sh stop
xcall.sh zkServer.sh start
启动kafka集群(只能启动三台)
kf.sh start
(8)单独启动 bigdata04 中的 kafka。
bin/kafka-server-start.sh -daemon ./config/server.properties
查看kafka集群first主题的详情:
bin/kafka-topics.sh --bootstrap-server bigdata01:9092 --topic first --describe
发现副本数并没有增加。
由于我之前创建first这个主题的时候只有一个副本,不是三个副本,所以呢,演示效果不佳。
kafka-topics.sh --bootstrap-server bigdata01:9092 --topic third --create --partitions 3 --replication-factor 3
2)执行负载均衡操作
(1)创建一个要均衡的主题
创建一个文件:vi topics-to-move.json
写上如下代码,如果多个topic 可以使用,分隔
{
"topics": [
{"topic": "third"}
],
"version": 1
}
(2)生成一个负载均衡的计划
在创建的时候,记得启动bigdata04节点,否则计划中还是没有bigdata04
bin/kafka-reassign-partitions.sh --bootstrap-server bigdata01:9092 --topics-to-move-json-file topics-to-move.json --broker-list "0,1,2,3" --generate
未来的分区策略拷贝一份:
{"version":1,"partitions":[{"topic":"third","partition":0,"replicas":[3,0,1],"log_dirs":["any","any","any"]},{"topic":"third","partition":1,"replicas":[0,1,2],"log_dirs":["any","any","any"]},{"topic":"third","partition":2,"replicas":[1,2,3],"log_dirs":["any","any","any"]}]}
(3)创建副本存储计划(所有副本存储在 broker0、broker1、broker2、broker3 中)。
vi increase-replication-factor.json
{"version":1,"partitions":[{"topic":"first","partition":0,"replicas":[3,2,0],"log_dirs":["any","any","any"]},{"topic":"first","partition":1,"replicas":[0,3,1],"log_dirs":["any","any","any"]},{"topic":"first","partition":2,"replicas":[1,0,2],"log_dirs":["any","any","any"]}]}
以上这个内容来自于第二步的执行计划。
(4)执行副本存储计划。
bin/kafka-reassign-partitions.sh --bootstrap-server bigdata01:9092 --reassignment-json-file increase-replication-factor.json --execute
(5)验证副本存储计划。
bin/kafka-reassign-partitions.sh --bootstrap-server bigdata01:9092 --reassignment-json-file increase-replication-factor.json --verify
如果不相信添加成功,可以查看first节点的详情:
4.2.2 退役旧节点
1)执行负载均衡操作
先按照退役一台节点,生成执行计划,然后按照服役时操作流程执行负载均衡。
(1)创建一个要均衡的主题
kafka下添加文件:vim topics-to-move.json
添加如下内容:
{
"topics": [
{"topic": "third"}
],
"version": 1
}
(2)创建执行计划。
bin/kafka-reassign-partitions.sh --bootstrap-server bigdata01:9092 --topics-to-move-json-file topics-to-move.json --broker-list "0,1,2" --generate
(3)创建副本存储计划(所有副本存储在 broker0、broker1、broker2 中)。
添加文件: vi increase-replication-factor.json
添加如下代码:
{"version":1,"partitions":[{"topic":"first","partition":0,"replicas":[0,2,1],"log_dirs":["any","any","any"]},{"topic":"first","partition":1,"replicas":[1,0,2],"log_dirs":["any","any","any"]},{"topic":"first","partition":2,"replicas":[2,1,0],"log_dirs":["any","any","any"]}]}
(4)执行副本存储计划
bin/kafka-reassign-partitions.sh --bootstrap-server hadoop11:9092 --reassignment-json-file increase-replication-factor.json --execute
(5)验证副本存储计划。
bin/kafka-reassign-partitions.sh --bootstrap-server hadoop11:9092 --reassignment-json-file increase-replication-factor.json --verify
2)执行停止命令
在 bigdata04上执行停止命令即可。
bin/kafka-server-stop.sh
4.3 Kafka 副本
4.3.1 副本基本信息 --副本又叫副本因子
(1)Kafka 副本作用:提高数据可靠性。
(2)Kafka 默认副本 1 个,生产环境一般配置为 2 个,保证数据可靠性;太多副本会增加磁盘存储空间,增加网络上数据传输,降低效率。
(3)Kafka 中副本分为:Leader 和 Follower。Kafka 生产者只会把数据发往 Leader, 然后 Follower 找 Leader 进行同步数据。
(4)Kafka 分区中的所有副本(包含Leader)统称为 AR(Assigned Repllicas)。
AR = ISR + OSR
ISR,表示和 Leader 保持同步的 Follower 集合。如果 Follower 长时间未向 Leader 发送通信请求或同步数据,则该 Follower 将被踢出 ISR。该时间阈值由 replica.lag.time.max.ms 参数设定,默认 30s。Leader 发生故障之后,就会从 ISR 中选举新的 Leader。
OSR,表示 Follower 与 Leader 副本同步时,延迟过多的副本.
4.3.2 Leader 选举流程
Kafka 集群中有一个 broker 的 Controller 会被选举为 Controller Leader,负责管理集群broker 的上下线,所有 topic 的分区副本分配和 Leader 选举等工作。
Controller 的信息同步工作是依赖于 Zookeeper 的。
(1)创建一个新的 topic,4 个分区,4 个副本
bin/kafka-topics.sh --bootstrap-server hadoop11:9092 --create --topic bigdata2308 --partitions 4 --replication-factor 4
(2)查看 Leader 分布情况
bin/kafka-topics.sh --bootstrap-server bigdata01:9092 --describe --topic bigdata2305
Topic: bigdata2301
Topic: bigdata2301 Partition: 0 Leader: 0 Replicas: 0,2,3,1 Isr: 0,2,3,1
Topic: bigdata2301 Partition: 1 Leader: 2 Replicas: 2,3,1,0 Isr: 2,3,1,0
Topic: bigdata2301 Partition: 2 Leader: 3 Replicas: 3,1,0,2 Isr: 3,1,0,2
Topic: bigdata2301 Partition: 3 Leader: 1 Replicas: 1,0,2,3 Isr: 1,0,2,3
(3)停止掉 hadoop13 的 kafka 进程,并查看 Leader 分区情况
bin/kafka-server-stop.sh
bin/kafka-topics.sh --bootstrap-server bigdata01:9092 --describe
--topic bigdata2305
Topic: bigdata2301 Partition: 0 Leader: 0 Replicas: 0,2,3,1 Isr: 0,2,1
Topic: bigdata2301 Partition: 1 Leader: 2 Replicas: 2,3,1,0 Isr: 2,1,0
Topic: bigdata2301 Partition: 2 Leader: 1 Replicas: 3,1,0,2 Isr: 1,0,2
Topic: bigdata2301 Partition: 3 Leader: 1 Replicas: 1,0,2,3 Isr: 1,0,2
(4)停止掉 hadoop14 的 kafka 进程,并查看 Leader 分区情况
通过以上演示,大家可以发现,选举是按照AR(跟Replicas一样)进行的,而不是ISR
4.3.3 Leader 和 Follower 故障处理细节
LEO演示-- 每一个副本最后的偏移量offset + 1
HW(高水位线 High Water) 演示:所有副本中,最小的LEO
由于数据同步的时候先进入Leader,随后同步给Follower,假如Follower挂掉了,Leader和其他的Follower 继续往前存储数据,挂掉的节点从ISR集合中剔除,此时挂掉的Follower又重启了,它会先从上一次挂掉的节点的HW开始同步数据,直到追上最后一个Follower为止,此时会重新回归ISR。
4.3.4 分区副本分配
如果 kafka 服务器只有 4 个节点,那么设置 kafka 的分区数大于服务器台数,在 kafka底层如何分配存储副本呢? 答案是否定的。
1)创建 16 分区,3 个副本
(1)创建一个新的 topic,名称为 second。
bin/kafka-topics.sh --bootstrap-server hadoop11:9092 --create --partitions 16 --replication-factor 3 --topic second
bin/kafka-topics.sh --bootstrap-server bigdata01:9092 --create --topic bigdata230801 --partitions 3 --replication-factor 4
假如你有3个broker ,却创建4个副本,报错!!
Error while executing topic command : Replication factor: 4 larger than available brokers: 3.
[2023-09-13 18:43:47,458] ERROR org.apache.kafka.common.errors.InvalidReplicationFactorException: Replication factor: 4 larger than available brokers: 3
bin/kafka-topics.sh --bootstrap-server bigdata01:9092 --create --topic bigdata23 --partitions 4 --replication-factor 2
假如你有3个broker ,却创建4个分区,是可以的。
以上错误的意思是,目前只有2台服务器,却要创建3个副本,创建不了。
(2)查看分区和副本情况
bin/kafka-topics.sh --bootstrap-server hadoop102:9092 --describe --topic second
Topic: second4 Partition: 0 Leader: 0 Replicas: 0,1,2 Isr: 0,1,2
Topic: second4 Partition: 1 Leader: 1 Replicas: 1,2,3 Isr: 1,2,3
Topic: second4 Partition: 2 Leader: 2 Replicas: 2,3,0 Isr: 2,3,0
Topic: second4 Partition: 3 Leader: 3 Replicas: 3,0,1 Isr: 3,0,1
Topic: second4 Partition: 4 Leader: 0 Replicas: 0,2,3 Isr: 0,2,3
Topic: second4 Partition: 5 Leader: 1 Replicas: 1,3,0 Isr: 1,3,0
Topic: second4 Partition: 6 Leader: 2 Replicas: 2,0,1 Isr: 2,0,1
Topic: second4 Partition: 7 Leader: 3 Replicas: 3,1,2 Isr: 3,1,2
Topic: second4 Partition: 8 Leader: 0 Replicas: 0,3,1 Isr: 0,3,1
Topic: second4 Partition: 9 Leader: 1 Replicas: 1,0,2 Isr: 1,0,2
Topic: second4 Partition: 10 Leader: 2 Replicas: 2,1,3 Isr: 2,1,3
Topic: second4 Partition: 11 Leader: 3 Replicas: 3,2,0 Isr: 3,2,0
Topic: second4 Partition: 12 Leader: 0 Replicas: 0,1,2 Isr: 0,1,2
Topic: second4 Partition: 13 Leader: 1 Replicas: 1,2,3 Isr: 1,2,3
Topic: second4 Partition: 14 Leader: 2 Replicas: 2,3,0 Isr: 2,3,0
Topic: second4 Partition: 15 Leader: 3 Replicas: 3,0,1 Isr: 3,0,1
kafka在进行初始化的时候,选举谁当第一Leader,是有一定的算法的。算法保障了Leader不在一个broker里面。
4.3.5 生产经验——手动调整分区副本的存储
在生产环境中,每台服务器的配置和性能不一致,但是Kafka只会根据自己的代码规则创建对应的分区副本,就会导致个别服务器存储压力较大。所有需要手动调整分区副本的存储。
需求:创建一个新的topic,4个分区,两个副本,名称为three。将 该topic的所有副本都存储到broker0和broker1两台服务器上。
手动调整分区副本存储的步骤如下:
(1)创建一个新的 topic,名称为 three。
bin/kafka-topics.sh --bootstrap-server bigdata01:9092 --create --partitions 4 --replication-factor 2 --topic three
(2)查看分区副本存储情况。
bin/kafka-topics.sh --bootstrap-server bigdata01:9092 --describe --topic three
(3)创建副本存储计划(所有副本都指定存储在 broker0、broker1 中)。
vi increase-replication-factor.json
输入如下内容:
{
"version":1,
"partitions":[{"topic":"three","partition":0,"replicas":[0,1]},
{"topic":"three","partition":1,"replicas":[0,1]},
{"topic":"three","partition":2,"replicas":[1,0]},
{"topic":"three","partition":3,"replicas":[1,0]}]
}
4)执行副本存储计划。
屁股决定脑袋
bin/kafka-reassign-partitions.sh --bootstrap-server bigdata01:9092 --reassignment-json-file increase-replication-factor.json --execute
(5)验证副本存储计划。
bin/kafka-reassign-partitions.sh -- bootstrap-server bigdata01:9092 --reassignment-json-file increase-replication-factor.json --verify
(6)查看分区副本存储情况
bin/kafka-topics.sh --bootstrap-server bigdata01:9092 --describe --topic three
4.3.6 生产经验——Leader Partition 负载平衡
正常情况下,Kafka本身会自动把Leader Partition均匀分散在各个机器上,来保证每台机器的读写吞吐量都是均匀的。但是如果某些broker宕机,会导致Leader Partition过于集中在其他少部分几台broker上,这会导致少数几台broker的读写请求压力过高,其他宕机的broker重启之后都是follower partition,读写请求很低,造成集群负载不均衡。
auto.leader.rebalance.enable,默认是true。 自动Leader Partition 平衡
• leader.imbalance.per.broker.percentage, 默认是10%。每个broker允许的不平衡 的leader的比率。如果每个broker超过 了这个值,控制器会触发leader的平衡。
• leader.imbalance.check.interval.seconds, 默认值300秒。检查leader负载是否平衡的间隔时间。
从以上可以看出,Leader 0,明明是3需要变为Leader,就说明这个中有Leader挂了再重启的情况,4个节点,一个节点不平衡,1/4 >10%,所以会触发再平衡,其他节点也是一样的。
生产环境下:该值默认为true,一般修改为false,因为不影响正常的使用,再平衡会造成资源的浪费。
4.3.7 生产经验——增加副本因子
在生产环境当中,由于某个主题的重要等级需要提升,我们考虑增加副本。副本数的
增加需要先制定计划,然后根据计划执行。
1)创建 topic
bin/kafka-topics.sh --bootstrap-server bigdata01:9092 --create --partitions 3 --replication-factor 1 --topic four
通过命令行修改副本是否成功?
分区是可以通过语句修改的,只能改多,不能改少,副本创建以后就不能直接修改了。
bin/kafka-topics.sh --bootstrap-server bigdata01:9092 --alter --partitions 3 --replication-factor 3 --topic four
没办法使用命令修改的。
2)手动增加副本存储
通过命令查看副本情况
(1)创建副本存储计划(所有副本都指定存储在 broker0、broker1、broker2 中)。
vi increase-replication-factor.json
添加如下内容:
{"version":1,"partitions":[{"topic":"four","partition":0,"replicas":[0,1,2]},{"topic":"four","partition":1,"replicas":[0,1,2]},{"topic":"four","partition":2,"replicas":[0,1,2]}]}
(2)执行副本存储计划。
bin/kafka-reassign-partitions.sh --bootstrap-server hadoop11:9092 --reassignment-json-file increase-replication-factor.json --execute
查看副本情况:
4.4 文件存储
4.4.1 文件存储机制 (重要)
1)Topic 数据的存储机制
Topic是逻辑上的概念,而partition是物理上的概念,每个partition对应于一个log文件,该log文件中存储的就是Producer生产的数据。Producer生产的数据会被不断追加到该log文件末端,为防止log文件过大导致数据定位效率低下,Kafka采取了分片和索引机制,将每个partition分为多个segment。每个segment包括:“.index”文件、“.log”文件和.timeindex等文件。这些文件位于一个文件夹下,该文件夹的命名规则为:topic名称+分区序号,例如:first-0。
2)思考:Topic 数据到底存储在什么位置?
(1)启动生产者,并发送消息。
bin/kafka-console-producer.sh -- bootstrap-server bigdata01:9092 --topic first
>hello world
(2)查看 hadoop11(或者 hadoop12、hadoop13)的/opt/installs/kafka3/datas/first-1 (first-0、first-2)路径上的文件。
进入查看:ls
00000000000000000092.index
00000000000000000092.log
00000000000000000092.snapshot
00000000000000000092.timeindex
leader-epoch-checkpoint
partition.metadata
(3)直接查看 log 日志,发现是乱码
(4)通过工具查看 index 和 log 信息。
kafka-run-class.sh kafka.tools.DumpLogSegments --files ./00000000000000000000.index
kafka-run-class.sh kafka.tools.DumpLogSegments --files ./00000000000000000000.log
kafka存储数据的时候使用的是稀疏索引,所以运行速度快。
4.4.2 文件清理策略
Kafka 中默认的日志(这个地方是数据的意思,就是Segment)保存时间为 7 天,可以通过调整如下参数修改保存时间。
log.retention.hours,最低优先级小时,默认 7 天。
log.retention.minutes,分钟。 --如果设置了该值,小时的设置不起作用。
log.retention.ms,最高优先级毫秒。 --如果设置了该值,分钟的设置不起作用。
log.retention.check.interval.ms,负责设置检查周期,默认 5 分钟。
那么日志一旦超过了设置的时间,怎么处理呢?
Kafka 中提供的日志清理策略有 delete 和 compact 两种。
1)delete 日志删除:将过期数据删除
log.cleanup.policy = delete 所有数据启用删除策略
(1)基于时间:默认打开。以 segment 中所有记录中的最大时间戳作为该文件时间戳。
(2)基于大小:默认关闭。超过设置的所有日志总大小,删除最早的 segment。
log.retention.bytes,默认等于-1,表示无穷大。
思考:如果一个 segment 中有一部分数据过期,一部分没有过期,怎么处理?
2)compact 日志压缩(合并的意思,不是真的压缩)
compact日志压缩:对于相同key的不同value值,只保留最后一个版本。
log.cleanup.policy = compact 所有数据启用压缩策略
压缩后的offset可能是不连续的,比如上图中没有6,当从这些offset消费消息时,将会拿到比这个offset大的offset对应的消息,实际上会拿到offset为7的消息,并从这个位置开始消费。
这种策略只适合特殊场景,比如消息的key是用户ID,value是用户的资料,通过这种压缩策略,整个消息集里就保存了所有用户最新的资料。
比如:张三 去年18岁,今年19岁,这种场景下可以进行压缩。
4.5 高效读写数据 (面试题)
1)Kafka 本身是分布式集群,可以采用分区技术,并行度高
2)读数据采用稀疏索引,可以快速定位要消费的数据。(mysql中索引多了之后,写入速度就慢了)
3)顺序写磁盘
Kafka 的 producer 生产数据,要写入到 log 文件中,写的过程是一直追加到文件末端, 为顺序写。官网有数据表明,同样的磁盘,顺序写能到 600M/s,而随机写只有 100K/s。这与磁盘的机械机构有关,顺序写之所以快,是因为其省去了大量磁头寻址的时间。
4)页缓存 + 零拷贝技术
零拷贝:Kafka的数据加工处理操作交由Kafka生产者和Kafka消费者处理。Kafka Broker应用层不关心存储的数据,所以就不用 走应用层,传输效率高
PageCache页缓存:Kafka重度依赖底层操作系统提供的PageCache功 能。当上层有写操作时,操作系统只是将数据写入 PageCache。当读操作发生时,先从PageCache中查找,如果找不到,再去磁盘中读取。实际上PageCache是把尽可能多的空闲内存都当做了磁盘缓存来使用
生产者将数据发送给kafka,kafka将数据交给Linux内核,Linux内核将数据放入自身操作系统的页缓存中,然后到一定值写入磁盘,假如消费者过来消费,直接从页缓存中,通过网卡发送给消费者,根本就没有去kafka的业务系统中获取数据,所以速度比较快。
跟这个问题非常像:mysql读取数据的速度为什么这么快!--buffer pool