写在前面
在介绍联邦学习客户端之间数据Non-IID分布前,我们需要先了解Dataset Shift的概念。
联邦学习中客户端之间Non-IID分布
和我们在做机器学习任务时可能遇到的训练集与测试集分布不一致
其实是一个道理(因为你可以把训练集想象成客户端1,测试集想象成客户端2)。
训练集和测试集分布不一致被称作数据集偏移(Dataset Shift)。西班牙格拉纳达大学Francisco Herrera教授在他PPT《Dataset Shift in Classification: Approaches and Problems》里提到数据集偏移有三种类型:
- 协变量偏移(Covariate Shift): 独立变量的偏移,指训练集和测试集的输入服从不同分布,但背后是服从同一个函数关系,如图1所示。