联邦学习中常见的Clients数据Non-IID非独立同分布总结

本文总结了联邦学习中客户端数据Non-IID分布的五种类型:Feature distribution skew, Label distribution skew, Same label, different features, Same features, different label及Quantity skew。讨论了数据集偏移的概念,包括协变量偏移、先验概率偏移和概念偏移。并引用了相关论文进行深入探讨。" 128011655,5685901,代码审计与安全防护:资产测绘与漏洞分析,"['安全', '代码安全', 'Java安全', '资产管理和安全', '漏洞分析', '网络攻防']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

写在前面

在介绍联邦学习客户端之间数据Non-IID分布前,我们需要先了解Dataset Shift的概念。

联邦学习中客户端之间Non-IID分布和我们在做机器学习任务时可能遇到的训练集与测试集分布不一致其实是一个道理(因为你可以把训练集想象成客户端1,测试集想象成客户端2)。

训练集和测试集分布不一致被称作数据集偏移(Dataset Shift)。西班牙格拉纳达大学Francisco Herrera教授在他PPT《Dataset Shift in Classification: Approaches and Problems》里提到数据集偏移有三种类型:

  • 协变量偏移(Covariate Shift): 独立变量的偏移,指训练集和测试集的输入服从不同分布,但背后是服从同一个函数关系,如图1所示。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

捡起一束光

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值