hankel矩阵的去噪方法

本文介绍了Hankel矩阵的去噪方法,通过将一维信号转化为Hankel矩阵,利用奇异值分解(SVD)原理,保留相关性强的大奇异值,去除噪声对应的较小奇异值,实现信号重构和噪声压制。示例展示了不同奇异值截断位置对去噪效果的影响。
摘要由CSDN通过智能技术生成

hankel矩阵的去噪方法

Hankel矩阵的滤波方法Hankel滤波多用于处理阵列信号中,根据阵列信号之间的相关性进行滤波的一种算法。在处理单道信号时,将一维资料在这里插入图片描述
​排列成为Hankel矩阵的形式:
在这里插入图片描述

​H是一个Hankel矩阵,矩阵的每条对角线上的元素都是相同的,且H的每一行或者每一列都可以通过循环位移得到原始一维信号X。对矩阵H进行奇异值分解:​ρ =[ρ1,ρ2,。。]为hankel矩阵的n个奇异值,且满足ρ1>ρ2>ρn,将上式写为:
在这里插入图片描述

​由奇异值分解理论可知,矩阵H中,由于每一个行向量都是由X变换的来,故有用信号相关性大,对应的奇异值也较大;而噪声信号由于行列的相关性很弱,对应的奇异值较小。因此通过选取较大的奇异值去重构信号就可以达到噪声压制的目的,如下式:​式中m表示奇异值截断位置,H表示滤波后m阶重构矩阵,H随机噪声已经被去除,再将重构的矩阵H反对角线上的元素进行求和平均,得到信号的估计量。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值