hankel矩阵的去噪方法
Hankel矩阵的滤波方法Hankel滤波多用于处理阵列信号中,根据阵列信号之间的相关性进行滤波的一种算法。在处理单道信号时,将一维资料
排列成为Hankel矩阵的形式:
H是一个Hankel矩阵,矩阵的每条对角线上的元素都是相同的,且H的每一行或者每一列都可以通过循环位移得到原始一维信号X。对矩阵H进行奇异值分解:ρ =[ρ1,ρ2,。。]为hankel矩阵的n个奇异值,且满足ρ1>ρ2>ρn,将上式写为:
由奇异值分解理论可知,矩阵H中,由于每一个行向量都是由X变换的来,故有用信号相关性大,对应的奇异值也较大;而噪声信号由于行列的相关性很弱,对应的奇异值较小。因此通过选取较大的奇异值去重构信号就可以达到噪声压制的目的,如下式:式中m表示奇异值截断位置,H表示滤波后m阶重构矩阵,H随机噪声已经被去除,再将重构的矩阵H反对角线上的元素进行求和平均,得到信号的估计量。