摘要
如之前提到到过的一样, Softmax交叉熵会导致本地模型严重过拟合少数类和缺失类。本文将Logits进行重校准,来缓解Softmax带来的问题。
Introduction
本文讨论的场景是Label distribution skew。举个栗子,大熊猫只能在中国和动物园里看到。基本上论文的实验设置都是Label skew。在此场景下,局部模型是有偏的,聚合时会偏离全局最优点。本文旨在减少本地模型的偏移。
提出的方法
作者说这个思想是受到另一篇论文启发。按作者的说法,这个LOSS可以更好的关注少数边缘类。
杂谈
Margin Loss思想是借鉴另一篇论文。没有公布源码。超参数没说设成多少(估计是各种试选了个最好的)。与FedRS是互补的。FedRS关注样本中没有出现过的类别,这篇论文关注的是样本中的边缘少数类。