关于f(tx,ty)=t^nf(x,y)的学习

f ( t x , t y ) = t n f ( x , y ) f(tx,ty)=t^nf(x,y) f(tx,ty)=tnf(x,y)

这是n阶同质函数,可以推出

x ∂ f ∂ x + y ∂ f ∂ y = n f ( x , y ) x\frac {\partial f}{\partial x}+y\frac{\partial f}{\partial y}=nf(x,y) xxf+yyf=nf(x,y)

推理过程如下:

t x = X , t y = Y . tx = X,ty=Y. tx=X,ty=Y.
所以 f ( t x , t y ) = f ( X , Y ) , f(tx,ty)=f(X,Y), f(tx,ty)=f(X,Y),

∂ f ∂ t = ∂ ∂ X f ( X , Y ) ∂ X ∂ t + ∂ ∂ Y f ( X , Y ) ∂ Y ∂ t = n t n − 1 f ( x , y ) \frac{\partial f}{\partial t}=\frac{\partial}{\partial X}f(X,Y) \frac{\partial X}{\partial t}+\frac{\partial}{\partial Y} f(X,Y)\frac{\partial Y}{\partial t}=nt^{n-1}f(x,y) tf=Xf(X,Y)tX+Yf(X,Y)tY=ntn1f(x,y)

如果 t = 1 t=1 t=1,那么就可以推出

x ∂ f ( x , y ) ∂ x + y ∂ f ( x , y ) ∂ y = n f ( x , y ) x\frac{\partial f(x,y)}{\partial x}+y\frac{\partial f(x,y)}{\partial y} =nf(x,y) xxf(x,y)+yyf(x,y)=nf(x,y)

由于刚做了一个汤家凤的考研复习大全的多元函数微分学这一章的测试题填空题14题。
其中题目条件是 f ( t x , t y ) = t 2 f ( x , y ) f(tx,ty)=t^2f(x,y) f(tx,ty)=t2f(x,y),答案对两边t求导得出的是
x f x ′ ( t x , t y ) + y f y ′ ( t x , t y ) = 2 t f ( x , y ) xf'_x(tx,ty)+yf'_y(tx,ty)=2tf(x,y) xfx(tx,ty)+yfy(tx,ty)=2tf(x,y)
很显然,这个 f x ′ ( t x , t y ) f'_x(tx,ty) fx(tx,ty)并不正确,两边对t求导之后并不是 f ( t x , t y ) f(tx,ty) f(tx,ty)对x求导,得假定t=1才可以。

Reference
Math 3113 - Multivariable Calculus

内容概要:本文档介绍了Intel oneAPI工具集及其行业倡议,旨在提供跨架构编程解决方案,支持加速计算并打破专有锁定。oneAPI允许开发者选择最佳硬件加速技术,实现跨CPU、GPU、FPGA及其他加速器的性能优化。它兼容多种编程语言和模型(如C++、Python、SYCL、OpenMP等),并通过开放标准确保未来兼容性和代码重用。文档详细描述了oneAPI工具包的功能,包括渲染、高性能计算(HPC)、物联网(IoT)、AI分析等领域的应用。此外,还介绍了DPC++(数据并行C++)编程语言及其在不同硬件架构上的执行方式,以及Intel提供的各种优化库和分析工具,如Intel MKL、IPP、VTune Profiler等。最后,通过实际案例展示了oneAPI在医疗成像和超声产品中的成功应用。 适合人群:软件开发人员、硬件工程师、系统架构师、OEM/ODM厂商、ISV合作伙伴,特别是那些需要在多种硬件平台上进行高效编程和性能优化的专业人士。 使用场景及目标:①为跨架构编程提供统一的编程模型,简化多硬件平台的应用开发;②利用开放标准和工具集,提高代码可移植性和重用性;③通过优化编译器和技术库,提升应用程序的性能表现;④借助分析和调试工具,快速识别并解决性能瓶颈。 其他说明:Intel oneAPI工具集不仅支持现有编程语言和模型,还提供了强大的中间件和框架支持,适用于多样化的应用负载需求。开发者可以通过Intel DevCloud获取实际操作经验,同时利用DPC++兼容性工具将现有CUDA代码迁移到SYCL环境。此外,文档还提供了详细的性能优化指南和未来产品路线图,帮助用户更好地规划技术演进路径。
“班级网站设计源代码”项目是网页设计初学者及有一定基础的设计师的理想学习资源。它提供了完整的源代码,涵盖构建可运行班级网站所需的所有文件。网页设计包含前端开发、后端开发和用户体验设计等多个方面,而这个项目能帮助你深入理解这些技术的实际应用。 首先,HTML是网页的基础,它通过标签定义网页的结构,如标题、段落、图片和链接等。在这个项目中,你可以清晰地看到如何利用HTML搭建网页的框架。其次,CSS用于控制网页的样式和布局,赋予网页视觉美感。通过设置颜色、字体、布局以及响应式设计,CSS确保网站能在不同设备上良好显示。项目中的源代码展示了如何运用CSS实现多样化的样式效果。 JavaScript则是实现网页动态功能的关键,它能够处理用户交互、数据操作和动画效果。在这个班级网站中,JavaScript代码可能用于实现按钮点击事件、表单验证或页面动态更新等功能。此外,响应式设计是现代网页设计的重要组成部分。借助媒体查询和流式布局,该班级网站能够自动适应手机、平板和桌面电脑等不同设备的屏幕尺寸。 为了提高开发效率,现代网页设计常常会引入前端框架和库,如Bootstrap或Vue.js。这些工具提供了一套预设的样式和组件,简化了网页的构建过程。虽然具体是否使用了这些框架需要查看源代码,但了解它们的工作原理对于提升网页设计能力至关重要。 如果班级网站包含用户登录、留言等功能,那么后端技术(如PHP、Node.js或Python)和数据库(如MySQL或MongoDB)也会被涉及。这部分代码主要负责处理数据的提交、验证和存储,以及与服务器的通信。 用户体验(UX)和界面设计也是网页设计的重要方面。一个优秀的网站不仅要有美观的外观,还要具备良好的易用性。通过观察和分析这个班级网站的布局和交互设计,你可以学习如何提升用户体验,例如如何设计清晰的导航、易读的信息和直观的操作流程。 通过深入研究“
以下是一个简单的A*算法的C++代码实现,其中包含了估价函数、开放和封闭列表等概念: ```c++ #include <iostream> #include <vector> #include <queue> #include <cmath> using namespace std; // 表示一个节点的结构体 struct Node { int x, y; // 节点的坐标 int g, h, f; // g: 起点到当前节点的实际距离,h: 当前节点到终点的预估距离,f: g+h Node* parent; // 指向父节点的指针 Node(int x, int y, int g, int h, Node* parent) : x(x), y(y), g(g), h(h), f(g+h), parent(parent) {} }; // 比较两个节点的f值 struct CompareNode { bool operator() (Node* a, Node* b) { return a->f > b->f; } }; // 计算两个节点之间的曼哈顿距离 int manhattanDistance(int x1, int y1, int x2, int y2) { return abs(x1-x2) + abs(y1-y2); } // 判断节点是否在地图内 bool isValid(int x, int y, int n, int m) { return x >= 0 && x < n && y >= 0 && y < m; } vector<pair<int, int>> findPath(vector<vector<int>>& map, int sx, int sy, int tx, int ty) { int n = map.size(); int m = map[0].size(); // 起点和终点相同,直接返回 if (sx == tx && sy == ty) { return {{sx, sy}}; } // 用二维数组记录每个节点的状态,0表示未访问,1表示在开放列表,-1表示在封闭列表 vector<vector<int>> state(n, vector<int>(m, 0)); // 定义开放列表和封闭列表 priority_queue<Node*, vector<Node*>, CompareNode> openList; vector<Node*> closeList; // 将起点加入开放列表 Node* startNode = new Node(sx, sy, 0, manhattanDistance(sx, sy, tx, ty), nullptr); openList.push(startNode); state[sx][sy] = 1; // 开始搜索 while (!openList.empty()) { // 取出f值最小的节点 Node* curNode = openList.top(); openList.pop(); // 将该节点加入封闭列表 closeList.push_back(curNode); state[curNode->x][curNode->y] = -1; // 如果当前节点是终点,返回路径 if (curNode->x == tx && curNode->y == ty) { vector<pair<int, int>> path; while (curNode) { path.emplace_back(curNode->x, curNode->y); curNode = curNode->parent; } reverse(path.begin(), path.end()); return path; } // 遍历当前节点的相邻节点 vector<pair<int, int>> dirs{{0, 1}, {0, -1}, {1, 0}, {-1, 0}}; for (auto& dir : dirs) { int nx = curNode->x + dir.first; int ny = curNode->y + dir.second; // 判断相邻节点是否在地图内 if (!isValid(nx, ny, n, m)) continue; // 判断相邻节点是否是障碍物或已在封闭列表中 if (map[nx][ny] == 1 || state[nx][ny] == -1) continue; // 计算相邻节点的g、h、f值 int ng = curNode->g + 1; int nh = manhattanDistance(nx, ny, tx, ty); int nf = ng + nh; // 如果相邻节点已在开放列表中,更新其g值和父节点 if (state[nx][ny] == 1) { for (auto& node : openList) { if (node->x == nx && node->y == ny) { if (ng < node->g) { node->g = ng; node->f = nf; node->parent = curNode; } break; } } } // 否则将相邻节点加入开放列表 else { Node* node = new Node(nx, ny, ng, nh, curNode); openList.push(node); state[nx][ny] = 1; } } } // 如果没有找到路径,返回空数组 return {}; } int main() { vector<vector<int>> map = { {0, 0, 0, 0, 0}, {0, 1, 0, 1, 0}, {0, 1, 0, 0, 0}, {0, 0, 1, 1, 0}, {0, 0, 0, 0, 0}, }; int sx = 0, sy = 0, tx = 4, ty = 4; auto path = findPath(map, sx, sy, tx, ty); for (auto& p : path) { cout << "(" << p.first << ", " << p.second << ") "; } cout << endl; return 0; } ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值