f ( t x , t y ) = t n f ( x , y ) f(tx,ty)=t^nf(x,y) f(tx,ty)=tnf(x,y)
这是n阶同质函数,可以推出
x ∂ f ∂ x + y ∂ f ∂ y = n f ( x , y ) x\frac {\partial f}{\partial x}+y\frac{\partial f}{\partial y}=nf(x,y) x∂x∂f+y∂y∂f=nf(x,y)
推理过程如下:
让
t
x
=
X
,
t
y
=
Y
.
tx = X,ty=Y.
tx=X,ty=Y.
所以
f
(
t
x
,
t
y
)
=
f
(
X
,
Y
)
,
f(tx,ty)=f(X,Y),
f(tx,ty)=f(X,Y),
∂ f ∂ t = ∂ ∂ X f ( X , Y ) ∂ X ∂ t + ∂ ∂ Y f ( X , Y ) ∂ Y ∂ t = n t n − 1 f ( x , y ) \frac{\partial f}{\partial t}=\frac{\partial}{\partial X}f(X,Y) \frac{\partial X}{\partial t}+\frac{\partial}{\partial Y} f(X,Y)\frac{\partial Y}{\partial t}=nt^{n-1}f(x,y) ∂t∂f=∂X∂f(X,Y)∂t∂X+∂Y∂f(X,Y)∂t∂Y=ntn−1f(x,y)
如果 t = 1 t=1 t=1,那么就可以推出
x ∂ f ( x , y ) ∂ x + y ∂ f ( x , y ) ∂ y = n f ( x , y ) x\frac{\partial f(x,y)}{\partial x}+y\frac{\partial f(x,y)}{\partial y} =nf(x,y) x∂x∂f(x,y)+y∂y∂f(x,y)=nf(x,y)
由于刚做了一个汤家凤的考研复习大全的多元函数微分学这一章的测试题填空题14题。
其中题目条件是
f
(
t
x
,
t
y
)
=
t
2
f
(
x
,
y
)
f(tx,ty)=t^2f(x,y)
f(tx,ty)=t2f(x,y),答案对两边t求导得出的是
x
f
x
′
(
t
x
,
t
y
)
+
y
f
y
′
(
t
x
,
t
y
)
=
2
t
f
(
x
,
y
)
xf'_x(tx,ty)+yf'_y(tx,ty)=2tf(x,y)
xfx′(tx,ty)+yfy′(tx,ty)=2tf(x,y)
很显然,这个
f
x
′
(
t
x
,
t
y
)
f'_x(tx,ty)
fx′(tx,ty)并不正确,两边对t求导之后并不是
f
(
t
x
,
t
y
)
f(tx,ty)
f(tx,ty)对x求导,得假定t=1才可以。
Reference
Math 3113 - Multivariable Calculus