常用的集成学习算法比较重要的需要调参的参数

function XGBoost CatBoostGBM Light GBM
Importance parameters which control overfitting1.learning_rate or eta-optimal values lie between 0.01-0.2 **2.max_depth****3.min_child_weight:**similar to min _child leaf;default is 1****1.learning_rate 2.Depth-****value can be any integer up to 16 Recommended-[1 to 10]3.no such feature like min_child_weight **4.I2-leaf-reg:**L2 regularization coefficient.Used for leaf value calculation(any positive integer allowed)****1.learning_rate 2.max_depth:****defaults is 20.important to note that tree still grows leaf_wise.Hence it is important to tune num_leaves(number of leavers in a tree)which should be smaller than 2^(max_depth).It is a very important parameter for LGBM **3.min_data_in_leaf:**default=20,alias=min_data,min_child_samples
Parameters for categorical valuesnot availiable**1.cat_features**:It denotes the index of categorical features**2.one_hot_max_size**;Use one-hot encoding for all features with number of different values less than or equal to the given parameter value(max-255)1**.categorical_feature;**specify the catagorical features we want to use for training our model
Parameters for controlling speed**1.colsample_bytree**:subsample ratio of columns **2.subsample:**subsample ratio of the training instance **3.n_estimators**:maximun number of decision trees;high value can lead to overfitting**1.rsm:random subspace method.**The percentage of features to use at each split selection**2.No such parameter to subset data** **3.Iterations:maximun** number of trees that can be built;high value canbe lead to overfitting`**1.feature_fraction:**`fraction of features to be taken for each iteration 2.bagging_fraction:data to be used for each iteration and is generally used to speed up the training and avoid overfitting **3.num_iterations**:number of boosting iterations to be performed;default=100
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值