【机器学习笔记】Logistics Regression中损失函数求偏导的具体步骤


根据吴恩达老师机器学习课程中在 Logistics Regression 中定义的损失函数:
J ( θ ) = − 1 m ∑ i = 1 m [ y ( i ) log ⁡ ( h θ ( x ( i ) ) ) + ( 1 − y ( i ) ) log ⁡ ( 1 − h θ ( x ( i ) ) ) ] J(\theta)=-\frac{1}{m} \sum_{i=1}^{m}\left[y^{(i)} \log \left(h_{\theta}\left(x^{(i)}\right)\right)+\left(1-y^{(i)}\right) \log \left(1-h_{\theta}\left(x^{(i)}\right)\right)\right] J(θ)=m1i=1m[y(i)log(hθ(x(i)))+(1y(i))log(1hθ(x(i)))]

对其中每个参数 θ j \theta_{j} θj 求偏导数,过程如下:

∂ ∂ θ j J ( θ ) = ∂ ∂ θ j − 1 m ∑ i = 1 m [ y ( i ) log ⁡ ( h θ ( x ( i ) ) ) + ( 1 − y ( i ) ) log ⁡ ( 1 − h θ ( x ( i ) ) ) ] = − 1 m ∑ i = 1 m [ y ( i ) ∂ ∂ θ j log ⁡ ( h θ ( x ( i ) ) ) + ( 1 − y ( i ) ) ∂ ∂ θ j log ⁡ ( 1 − h θ ( x ( i ) ) ) ] = − 1 m ∑ i = 1 m [ y ( i ) ∂ ∂ θ j h θ ( x ( i ) ) h θ ( x ( i ) ) + ( 1 − y ( i ) ) ∂ ∂ θ j ( 1 − h θ ( x ( i ) ) ) 1 − h θ ( x ( i ) ) ] = − 1 m ∑ i = 1 m [ y ( i ) ∂ ∂ θ j σ ( θ T x ( i ) ) h θ ( x ( i ) ) + ( 1 − y ( i ) ) ∂ ∂ θ j ( 1 − σ ( θ T x ( i ) ) ) 1 − h θ ( x ( i ) ) ] = − 1 m ∑ i = 1 m [ y ( i ) σ ( θ T x ( i ) ) ( 1 − σ ( θ T x ( i ) ) ) ∂ ∂ θ j θ T x ( i ) h θ ( x ( i ) ) + − ( 1 − y ( i ) ) σ ( θ T x ( i ) ) ( 1 − σ ( θ T x ( i ) ) ) ∂ ∂ θ j θ T x ( i ) 1 − h θ ( x ( i ) ) ] = − 1 m ∑ i = 1 m [ y ( i ) h θ ( x ( i ) ) ( 1 − h θ ( x ( i ) ) ) ∂ ∂ θ j θ T x ( i ) h θ ( x ( i ) ) − ( 1 − y ( i ) ) h θ ( x ( i ) ) ( 1 − h θ ( x ( i ) ) ) ∂ ∂ θ j θ T x ( i ) 1 − h θ ( x ( i ) ) ] = − 1 m ∑ i = 1 m [ y ( i ) ( 1 − h θ ( x ( i ) ) ) x j ( i ) − ( 1 − y ( i ) ) h θ ( x ( i ) ) x j ( i ) ] = − 1 m ∑ i = 1 m [ y ( i ) ( 1 − h θ ( x ( i ) ) ) − ( 1 − y ( i ) ) h θ ( x ( i ) ) ] x j ( i ) = − 1 m ∑ i = 1 m [ y ( i ) − y ( i ) h θ ( x ( i ) ) − h θ ( x ( i ) ) + y ( i ) h θ ( x ( i ) ) ] x j ( i ) = − 1 m ∑ i = 1 m [ y ( i ) − h θ ( x ( i ) ) ] x j ( i ) = 1 m ∑ i = 1 m [ h θ ( x ( i ) ) − y ( i ) ] x j ( i ) \begin{aligned} \frac{\partial}{\partial \theta_{j}} J(\theta) &=\frac{\partial}{\partial \theta_{j}} \frac{-1}{m} \sum_{i=1}^{m}\left[y^{(i)} \log \left(h_{\theta}\left(x^{(i)}\right)\right)+\left(1-y^{(i)}\right) \log \left(1-h_{\theta}\left(x^{(i)}\right)\right)\right] \\ &=-\frac{1}{m} \sum_{i=1}^{m}\left[y^{(i)} \frac{\partial}{\partial \theta_{j}} \log \left(h_{\theta}\left(x^{(i)}\right)\right)+\left(1-y^{(i)}\right) \frac{\partial}{\partial \theta_{j}} \log \left(1-h_{\theta}\left(x^{(i)}\right)\right)\right] \\ &=-\frac{1}{m} \sum_{i=1}^{m}\left[\frac{y^{(i)} \frac{\partial}{\partial \theta_{j}} h_{\theta}\left(x^{(i)}\right)}{h_{\theta}\left(x^{(i)}\right)}+\frac{\left(1-y^{(i)}\right) \frac{\partial}{\partial \theta_{j}}\left(1-h_{\theta}\left(x^{(i)}\right)\right)}{1-h_{\theta}\left(x^{(i)}\right)}\right] \\ &=-\frac{1}{m} \sum_{i=1}^{m}\left[\frac{y^{(i)} \frac{\partial}{\partial \theta_{j}} \sigma\left(\theta^{T} x^{(i)}\right)}{h_{\theta}\left(x^{(i)}\right)}+\frac{\left(1-y^{(i)}\right) \frac{\partial}{\partial \theta_{j}}\left(1-\sigma\left(\theta^{T} x^{(i)}\right)\right)}{1-h_{\theta}\left(x^{(i)}\right)}\right] \\ &=-\frac{1}{m} \sum_{i=1}^{m}\left[\frac{y^{(i)} \sigma\left(\theta^{T} x^{(i)}\right)\left(1-\sigma\left(\theta^{T} x^{(i)}\right)\right) \frac{\partial}{\partial \theta_{j}} \theta^{T} x^{(i)}}{h_{\theta}\left(x^{(i)}\right)}+\frac{-\left(1-y^{(i)}\right) \sigma\left(\theta^{T} x^{(i)}\right)\left(1-\sigma\left(\theta^{T} x^{(i)}\right)\right) \frac{\partial}{\partial \theta_{j}} \theta^{T} x^{(i)}}{1-h_{\theta}\left(x^{(i)}\right)}\right]\\ &=-\frac{1}{m} \sum_{i=1}^{m}\left[\frac{y^{(i)} h_{\theta}\left(x^{(i)}\right)\left(1-h_{\theta}\left(x^{(i)}\right)\right) \frac{\partial}{\partial \theta_{j}} \theta^{T} x^{(i)}}{h_{\theta}\left(x^{(i)}\right)}-\frac{\left(1-y^{(i)}\right) h_{\theta}\left(x^{(i)}\right)\left(1-h_{\theta}\left(x^{(i)}\right)\right) \frac{\partial}{\partial \theta_{j}} \theta^{T} x^{(i)}}{1-h_{\theta}\left(x^{(i)}\right)}\right] \\ &=-\frac{1}{m} \sum_{i=1}^{m}\left[y^{(i)}\left(1-h_{\theta}\left(x^{(i)}\right)\right) x_{j}^{(i)}-\left(1-y^{(i)}\right) h_{\theta}\left(x^{(i)}\right) x_{j}^{(i)}\right] \\ &=-\frac{1}{m} \sum_{i=1}^{m}\left[y^{(i)}\left(1-h_{\theta}\left(x^{(i)}\right)\right)-\left(1-y^{(i)}\right) h_{\theta}\left(x^{(i)}\right)\right] x_{j}^{(i)} \\ &=-\frac{1}{m} \sum_{i=1}^{m}\left[y^{(i)}-y^{(i)} h_{\theta}\left(x^{(i)}\right)-h_{\theta}\left(x^{(i)}\right)+y^{(i)} h_{\theta}\left(x^{(i)}\right)\right] x_{j}^{(i)} \\ &=-\frac{1}{m} \sum_{i=1}^{m}\left[y^{(i)}-h_{\theta}\left(x^{(i)}\right)\right] x_{j}^{(i)} \\ &=\frac{1}{m} \sum_{i=1}^{m}\left[h_{\theta}\left(x^{(i)}\right)-y^{(i)}\right] x_{j}^{(i)} \end{aligned} θjJ(θ)=θjm1i=1m[y(i)log(hθ(x(i)))+(1y(i))log(1hθ(x(i)))]=m1i=1m[y(i)θjlog(hθ(x(i)))+(1y(i))θjlog(1hθ(x(i)))]=m1i=1m[hθ(x(i))y(i)θjhθ(x(i))+1hθ(x(i))(1y(i))θj(1hθ(x(i)))]=m1i=1m[hθ(x(i))y(i)θjσ(θTx(i))+1hθ(x(i))(1y(i))θj(1σ(θTx(i)))]=m1i=1m[hθ(x(i))y(i)σ(θTx(i))(1σ(θTx(i)))θjθTx(i)+1hθ(x(i))(1y(i))σ(θTx(i))(1σ(θTx(i)))θjθTx(i)]=m1i=1m[hθ(x(i))y(i)hθ(x(i))(1hθ(x(i)))θjθTx(i)1hθ(x(i))(1y(i))hθ(x(i))(1hθ(x(i)))θjθTx(i)]=m1i=1m[y(i)(1hθ(x(i)))xj(i)(1y(i))hθ(x(i))xj(i)]=m1i=1m[y(i)(1hθ(x(i)))(1y(i))hθ(x(i))]xj(i)=m1i=1m[y(i)y(i)hθ(x(i))hθ(x(i))+y(i)hθ(x(i))]xj(i)=m1i=1m[y(i)hθ(x(i))]xj(i)=m1i=1m[hθ(x(i))y(i)]xj(i)


可以发现,该偏导数和线性回归中损失函数对参数 θ \theta θ 的偏导数形式是一致的,线性回归的损失函数定义为:

J ( θ ) = 1 2 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) 2 J(\theta)=\frac{1}{2 m} \sum_{i=1}^{m}\left(h_{\theta}\left(x^{(i)}\right)-y^{(i)}\right)^{2} J(θ)=2m1i=1m(hθ(x(i))y(i))2
其偏导数为:
∂ J ( θ ) ∂ θ j = 1 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) ⋅ x j ( i ) \begin{aligned} \frac{\partial J(\theta)}{\partial \theta_{j}} &=\frac{1}{m} \sum_{i=1}^{m}\left(h_{\theta}\left(x^{(i)}\right)-y^{(i)}\right) \cdot x_{j}^{(i)} \end{aligned} θjJ(θ)=m1i=1m(hθ(x(i))y(i))xj(i)

将其进行向量化:
∂ J ( θ ) ∂ θ j = 1 m x j → T ( X θ − y ⃗ ) \frac{\partial J(\theta)}{\partial \theta_{j}} \quad=\frac{1}{m} \overrightarrow{x_{j}}^{T}(X \theta-\vec{y}) θjJ(θ)=m1xj T(Xθy )
进一步得到损失函数的梯度:
∇ J ( θ ) = 1 m X T ( X θ − y ⃗ ) \nabla J(\theta) \quad=\frac{1}{m} X^{T}(X \theta-\vec{y}) J(θ)=m1XT(Xθy )

然后通过该梯度进行参数更新:
θ : = θ − α m X T ( X θ − y ⃗ ) \theta:=\theta-\frac{\alpha}{m} X^{T}(X \theta-\vec{y}) θ:=θmαXT(Xθy )



其他内容可参考:吴恩达机器学习


  • 4
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值