线性回归损失函数求偏导(手推)

在这里插入图片描述至于为什么可以去掉书中也没说,我推测可以在求梯度之前对训练数据标准化,使其均值为0,这样的话 x i x_i xi的均值就是0了,可以直接去掉,同时也会使得计算简便。

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 3
    评论
线性回归损失函数通常采用最小二乘法,即将所有样本的预测值与真实值之差的平方和最小化。假设有 $m$ 个样本,每个样本有 $n$ 个特征,$x^{(i)}$ 表示第 $i$ 个样本的特征向量,$y^{(i)}$ 表示第 $i$ 个样本的真实值,$w$ 表示模型的参数向量,$b$ 表示模型的截距,则线性回归的模型可以表示为: $$ \hat{y}^{(i)} = w^Tx^{(i)} + b $$ 其中 $\hat{y}^{(i)}$ 表示第 $i$ 个样本的预测值。对于所有的样本,我们可以定义损失函数 $J(w,b)$ 为: $$ J(w,b) = \frac{1}{2m}\sum_{i=1}^{m}(\hat{y}^{(i)} - y^{(i)})^2 $$ 其中 $\frac{1}{2}$ 是为了方便后续导,$m$ 是样本数量。我们的目标是最小化损失函数 $J(w,b)$,即: $$ \min_{w,b} J(w,b) $$ 为了解最小化问题,我们需要对 $J(w,b)$ 分别对 $w$ 和 $b$ 偏导数,并令其为 $0$,得到 $w$ 和 $b$ 的最优解。具体地,对 $w$ 偏导数有: $$ \begin{aligned} \frac{\partial J(w,b)}{\partial w} &= \frac{1}{m}\sum_{i=1}^{m}(\hat{y}^{(i)} - y^{(i)})x^{(i)} \\ &= \frac{1}{m}\sum_{i=1}^{m}(w^Tx^{(i)} + b - y^{(i)})x^{(i)} \end{aligned} $$ 对 $b$ 偏导数有: $$ \begin{aligned} \frac{\partial J(w,b)}{\partial b} &= \frac{1}{m}\sum_{i=1}^{m}(\hat{y}^{(i)} - y^{(i)}) \\ &= \frac{1}{m}\sum_{i=1}^{m}(w^Tx^{(i)} + b - y^{(i)}) \end{aligned} $$ 令上述偏导数为 $0$,解得 $w$ 和 $b$ 的最优解为: $$ \begin{aligned} w &= (X^TX)^{-1}X^Ty \\ b &= \frac{1}{m}\sum_{i=1}^{m}(y^{(i)} - w^Tx^{(i)}) \end{aligned} $$ 其中 $X$ 是 $m \times n$ 的矩阵,每行表示一个样本的特征向量,$y$ 是 $m$ 维向量,表示所有样本的真实值。上述公式可以通过矩阵运算一次性解,这就是线性回归的闭式解。如果样本数量很大,矩阵 $X^TX$ 可能不可逆,此时可以使用梯度下降等迭代算法解。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

comli_cn

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值