分区数和并行度的关系
分区数:是一个相对静态的概念,这个值的初始大小由数据源的分布情况决定(如果是内存数据,分区数和设置的并行度一致),比如读取hdfs,此时有10个block块,那么你的分区数就是10,加入读取kafka,topic的partition数为8,那么这个时候分区数就为8。
并行度:是一个相对动态的概念,是根据当前计算引擎可用资源来动态决定的,它的值是小于等于分区数。
举个例子:假如你要处理一个有10个block的hdfs数据集,这个时候你的分区数10是固定的,并行度可以设置为小于等于10,比如你就设置为10,这个时候是最高效的,一次就行执行完成,如果你把并行度设置为5,那就要处理两次,依次类推,如果你设置并行度为100,那么多余的90个会浪费掉。
总结
1.分区数描述的是数据源,是个相对静态的概念
2.并行度描述的是计算引擎一次要同时处理的分区数,是根据资源情况临时决定的
3.并行度小于等于分区数