理解spark的分区数和并行度的关系

分区数和并行度的关系

分区数:是一个相对静态的概念,这个值的初始大小由数据源的分布情况决定(如果是内存数据,分区数和设置的并行度一致),比如读取hdfs,此时有10个block块,那么你的分区数就是10,加入读取kafka,topic的partition数为8,那么这个时候分区数就为8。

并行度:是一个相对动态的概念,是根据当前计算引擎可用资源来动态决定的,它的值是小于等于分区数。

举个例子:假如你要处理一个有10个block的hdfs数据集,这个时候你的分区数10是固定的,并行度可以设置为小于等于10,比如你就设置为10,这个时候是最高效的,一次就行执行完成,如果你把并行度设置为5,那就要处理两次,依次类推,如果你设置并行度为100,那么多余的90个会浪费掉。

总结

1.分区数描述的是数据源,是个相对静态的概念
2.并行度描述的是计算引擎一次要同时处理的分区数,是根据资源情况临时决定的
3.并行度小于等于分区数

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值