基于双向长短期记忆网络BILSTM的多输入多输出预测,双向长短期记忆网络BILSTM的数据回归预测。

%% 清空环境变量

warning off % 关闭报警信息

close all % 关闭开启的图窗

clear % 清空变量

clc % 清空命令行

%% 导入数据

res = xlsread('数据.xlsx');

%% 数据分析

num_size = 0.8; % 训练集占数据集比例

outdim = 3; % 最后3列为输出

num_samples = size(res, 1); % 样本个数

res = res(randperm(num_samples), :); % 打乱数据集(不希望打乱时,注释该行)

num_train_s = round(num_size * num_samples); % 训练集样本个数

f_ = size(res, 2) - outdim; % 输入特征维度

%% 划分训练集和测试集

P_train = res(1: num_train_s, 1: f_)';

T_train = res(1: num_train_s, f_ + 1: end)';

M = size(P_train, 2);

P_test = res(num_train_s + 1: end, 1: f_)';

T_test = res(num_train_s + 1: end, f_ + 1: end)';

N = size(P_test, 2);

outdim=3; %输出的维度

%% 数据归一化

[p_train, ps_input] = mapminmax(P_train, 0, 1);

p_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);

t_test = mapminmax('apply', T_test, ps_output);

%% 创建网络,

layers = [ ...

sequenceInputLayer(size(P_train,1)) % 输入层,即输入的特征变量个数

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

智能算法及其模型预测

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值