基于卷积神经网络-门控循环单元结合注意力机制(CNN-GRU-Attention)回归预测,多变量输入模型。matlab代码,2020版本及以上。评价指标包括:R2、MAE、MSE、RMSE和MA

 

%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行
%%  导入数据
P_train = xlsread('data','training set','B2:G191')';
T_train= xlsread('data','training set','H2:H191')';
% 测试集——44个样本
P_test=xlsread('data','test set','B2:G45')';
T_test=xlsread('data','test set','H2:H45')';

%%  数据分析
outdim = 1;                                  % 最后一列为输出
f_ = size(P_train, 1);                  % 输入特征维度
%%  得到训练集和测试样本个数
M = size(P_train, 2);
N = size(P_test , 2);
%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);

%%  数据平铺
%   将数据平铺成1维数据只是一种处理方式
%   也可以平铺成2维数据,以及3维数据,需要修改对应模型结构
%   但是应该始终和输入层数据结构保持一致
p_train =  double(reshape(p_train, f_, 1, 1, M));
p_test  =  double(reshape(p_test , f_, 1, 1, N));
t_train =  double(t_train)';
t_test  =  double(t_test )';

%%  数据格式转换
for i = 1 : M
    Lp_train{i, 1} = p_train(:, :, 1, i);
end

for i = 1 : N
    Lp_test{i, 1}  = p_test( :, :, 1, i);
end
    
%%  建立模型
lgraph = layerGraph();                                                 % 建立空白网络结构

tempLayers = [
    sequenceInputLayer([f_, 1, 1], "Name", "sequence")                 % 建立输入层,输入数据结构为[f_, 1, 1]
    sequenceFoldingLayer("Name", "seqfold")];                          % 建立序列折叠层
lgraph = addLayers(lgraph, tempLayers);                                % 将上述网络结构加入空白结构中

智能算法及其模型预测

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 2
    评论
matlab基于卷积-门控循环单元结合SE注意力机制(CNN-GRU-SE Attention)的数据回归是一种利用深度学习的方法来解决数据回归问题的技术。这种方法结合卷积神经网络(CNN)、门控循环单元(GRU)和SE注意力机制,可以有效地提取数据中的特征,并根据重要性进行加权处理,从而提高回归模型的性能。 首先,卷积神经网络用于提取数据中的局部特征。通过卷积操作可以有效地捕捉数据中的空间关系,提取出数据的局部特征。卷积神经网络通常包含多个卷积层和池化层,用于构建深度特征表示。 其次,门控循环单元用于对数据中的时间或序列信息进行建模。门控循环单元在传递信息的同时,还可以学习到序列数据中的长期依赖关系。通过GRU单元,在时间或序列上对数据进行逐步处理,从而有效地捕捉到数据的动态特征。 最后,SE注意力机制用于对特征的重要性进行加权处理。SE注意力机制可以根据每个特征的重要性,自动地学习到一个加权系数,使得对于重要特征的权重更高。这样可以让模型更关注于对回归结果有更大影响的特征,提高回归的精度和准确性。 综上所述,matlab基于卷积-门控循环单元结合SE注意力机制的数据回归方法是一种利用深度学习技术来解决回归问题的方法。该方法能够提取数据中的特征,建模序列信息,并根据特征的重要性进行加权处理,从而提高回归模型的性能。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

机器学习-深度学习

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值