1.3 n-gram平滑算法:Good-Turning、拉普拉斯平滑

117 篇文章 16 订阅 ¥129.90 ¥299.90
本文介绍了n-gram模型中遇到的零概率问题,详细阐述了拉普拉斯平滑(Add-one smoothing)和add-k平滑,并探讨了它们的局限性。接着,重点讲解了Good-Turing平滑的原理,通过实例展示了如何避免平滑过程中概率失真的问题。最后,提到了在Python中应用这些平滑技术的相关模块。
摘要由CSDN通过智能技术生成


上一节请看:

1.1 文本表示——词袋法:one-hot、TF-IDF、n-gram、神经概率语言模型

1.2 Bigram计算句子的概率、python实现_炫云云-CSDN博客

为什么需要平滑操作

假设有一个预料集

我 喜欢 喝 奶茶
我 喜欢 吃 巧克力
我 喜欢 健身
天啦撸,一起同过窗 要出 第三季 了

这个时候要计算“我喜欢喝咖啡”的概率

假设我们用bi-gram模型来计算,也就是说
    P ( 我

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

炫云云

你的鼓励是我创作最大的动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值