【机器学习】拉普拉斯平滑

【机器学习】拉普拉斯平滑

一、提出原因(背景)

  在某些场景,如文本分析中,计算某词的概率,可能会因为训练集中从没出现过这个词,而认为该词概率为0,并将影响后续计算。
  为解决零概率问题,法国数学家、物理学家拉普拉斯提出了拉普拉斯平滑。

二、思想及举例

  拉普拉斯平滑,又叫加一平滑,它对分子划分的计数加1,分母加类别数

   例如,已知一维变量分布的采样结果,变量为A,A的取值有三种情况:a1,a2,a3,现有样本集{ a1, a2, a1, a2, a3, a1, a1, a2},采用拉普拉斯平滑计算三种取值的概率。
  P(A=a1) = (4+1)/(8+3) = 5/11
  P(A=a2) = (3+1)/(8+3) = 4/11
  P(A=a3) = (1+1)/(8+3) = 2/11

   又如

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值