8.16 记忆增强神经网络:MANN、神经网络图灵机

本文介绍了记忆增强神经网络(MANN)和神经图灵机(NTM),这两种模型通过外部记忆模块解决传统神经网络的长期记忆问题。NTM由控制器和记忆库组成,利用读写头和寻址机制处理信息。MANN则利用元学习解决one-shot问题,快速吸收新数据并进行准确预测。内容包括NTM的读写头、寻址机制以及MANN的读写记忆和LRUA模块。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

👉8.7 Meta learning元学习全面理解、MAML、Reptile

8.8LSTM作为元学习器学习梯度下降

8.9 元学习网络结构讲解

记忆增强神经网络(MANN)进行元学习解决one-shot问题。

传统的基于梯度的网络需要学习大量的数据,通常是通过大量的迭代训练。当遇到新数据时,模型必须低效地重新学习它们的参数,以便在不产生灾难性干扰的情况下充分整合新信息。

神经图灵机是MANN的一个完全可微的实现。它由一个记忆库和控制器组成,控制器如前馈网络或LSTM,使用多个读写头与外部记忆模块交互。NTM外部记忆模块中的记忆编码和信息检索是快速的,每个时间步都有可能将向量表示放入或取出记忆。

这种能力使NTM成为元学习和低概率预测的完美候选,因为它既可以通过其权重的缓慢更新进行长期记忆,也可以通过其外部记忆模块进行短期记忆。因此,如果一个NTM可以学习通用的策略,什么样的表征应该放入记忆中和如何使用这些表征预测。这样ÿ

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

炫云云

你的鼓励是我创作最大的动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值