pytorch优化1:学习率调度器(优化策略),用来做学习率动态调整

本文介绍了PyTorch中五种常见的学习率调度器(StepLR,MultiStepLR,ExponentialLR,ReduceLROnPlateau,CosineAnnealingLR)的优缺点,并提供了相应的示例代码,帮助开发者根据任务选择和调整学习率策略。
摘要由CSDN通过智能技术生成

不同的学习率调度器在实际使用中各有优缺点,下面是一些常见的学习率调度器的优缺点:

1. StepLR:
   - 优点:简单易用,可以按照指定的步数调整学习率。
   - 缺点:可能不够灵活,无法根据训练过程中的表现自动调整学习率。

2. MultiStepLR:
   - 优点:在指定的milestones上调整学习率,相对于StepLR更灵活。
   - 缺点:需要手动指定milestones,不够自适应。

3. ExponentialLR:
   - 优点:按指数衰减调整学习率,可以更快地降低学习率。
   - 缺点:学习率下降速度过快,可能导致训练不稳定。

4. ReduceLROnPlateau:
   - 优点:根据验证集表现自动调整学习率,能够更好地应对训练过程中的波动。
   - 缺点:可能在某些情况下过于保守,导致学习率调整不够及时。

5. CosineAnnealingLR:
   - 优点:使用余弦函数调整学习率,可以更平滑地调整学习率,在一定程度上避免震荡。
   - 缺点:可能需要调整T_max参数来平衡学习率变化的速度和频率。

在PyTorch中,常见的学习率调度器包括:
1. StepLR:按照给定的步数调整学习率。
2. MultiStepLR:在指定的milestones上调整学习率。
3. ExponentialLR:按指数衰减调整学习率。
4. ReduceLROnPlateau:根据验证集表现调整学习率。
5. CosineAnnealingLR:使用余弦函数调整学习率。

您可以根据需要选择适合您训练任务的学习率调度器,并根据具体情况调整参数。

以下是这些学习率调度器的示例代码:

import torch
import torch.optim as optim
from torch.optim.lr_scheduler import StepLR, MultiStepLR, ExponentialLR, ReduceLROnPlateau, CosineAnnealingLR

# 示例网络模型
class Net(torch.nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.fc = torch.nn.Linear(10, 1)

    def forward(self, x):
        x = self.fc(x)
        return x

model = Net()
optimizer = optim.SGD(model.parameters(), lr=0.1)

# StepLR
scheduler_step = StepLR(optimizer, step_size=30, gamma=0.1)

# MultiStepLR
scheduler_multi_step = MultiStepLR(optimizer, milestones=[30, 80], gamma=0.1)

# ExponentialLR
scheduler_exp = ExponentialLR(optimizer, gamma=0.95)

# ReduceLROnPlateau
scheduler_reduce = ReduceLROnPlateau(optimizer, mode='min', factor=0.1, patience=5, verbose=True)

# CosineAnnealingLR
scheduler_cosine = CosineAnnealingLR(optimizer, T_max=10)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值