深度学习之学习率调度器Scheduler介绍

        调度器是深度学习训练过程中非常重要的一部分,它用于动态调整模型的学习率,从而提高训练效率和最终性能。

1. 为什么需要学习率调度器?

        深度学习训练中,学习率是一个非常关键的超参数。合适的学习率可以确保模型快速收敛并获得良好的性能。

        但是在训练过程中,最优的学习率会随着训练进度而发生变化。

        使用固定学习率可能会导致训练效率低下或者模型难以收敛。

        因此需要使用调度器动态调整学习率,以适应训练的不同阶段。

2. 调度器的主要作用和效果

        提高训练效率:合理的学习率调整可以大幅加快模型收敛速度。

        改善最终性能:合适的学习率变化有助于模型逃离局部最优,达到更好的全局最优。

        稳定训练过程:调度器可以平滑训练中的学习率变化,增强训练稳定性。

3. 调度器的主要类型及特点

        各类调度器有不同的优势和适用场景,需要根据任务特点进行实验选择。

        也可以将多种调度器组合使用,形成更复杂灵活的学习率策略。

        主要有以下几种常用的调度器:

3.1 Step Scheduler:

        按固定的间隔(epoch)降低学习率,如每 10 个 epoch 降低 0.1 倍。

        简单易用,但需要手动设置降低频率和降低比例。

3.2 Exponential Scheduler:

        学习率按指数函数下降,如 lr = init_lr * gamma^epoch。

        参数设置较少,但下降速度难以控制。

3.3 ReduceLROnPlateau Scheduler:

        根据评估指标(如验证集accuracy)来动态调整学习率。

        当评估指标停止提升时,降低学习率。

        能够自适应地调整学习率,但需要设置触发条件。

3.4 Cosine Annealing Scheduler:

        学习率按余弦函数周期性变化。

        初始高学习率有利于跳出局部最优,后期降低有利于收敛。

        需要设置周期长度和最小学习率。

3.5 OneCycle Scheduler:

        学习率先升后降,形成一个U型曲线。

        可以自动设置最高学习率和周期长度。

        在训练初期使用较高学习率有利于快速收敛。

3.6 CosineAnnealingWarmRestarts Scheduler:

        在余弦退火的基础上,引入周期性的"热重启"机制。

        可以在局部最优附近来回振荡,提高最终性能。

        需要设置初始学习率、周期长度和重启周期。

4.  调度器的使用方法

        在深度学习框架(如PyTorch, TensorFlow)中,调度器通常以类的形式提供。

        可以在优化器和模型定义之后,将调度器应用到优化器上。

        调度器会在每个训练step或epoch中自动更新学习率。

        调度器的参数需要通过实验仔细调整,以获得最佳性能。

        总的来说,调度器的选择需要根据具体任务和模型的特点进行实践性的尝试和调优。同时也可以尝试多种调度器的组合使用,以获得更好的训练效果。

  • 5
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
深度学习中,学习率是一个非常重要的超参数,它决定了模型在训练过程中参数的调整幅度。如果学习率太小,模型收敛速度会很慢,而如果学习率太大,则可能会导致模型无法收敛。 PyTorch提供了多种学习率调度(learning rate scheduler),可以根据训练过程中的表现自动调整学习率,进而提高模型的训练效果。 下面介绍一些常见的学习率调度: 1. StepLR StepLR是一种简单的学习率调度,它可以在给定的epoch数上降低学习率。例如,在第10个epoch时将学习率降低为原来的0.1倍: ```python import torch.optim as optim from torch.optim.lr_scheduler import StepLR optimizer = optim.SGD(model.parameters(), lr=0.1) scheduler = StepLR(optimizer, step_size=10, gamma=0.1) ``` 2. ReduceLROnPlateau ReduceLROnPlateau是一种基于模型表现的学习率调度,它可以根据模型在验证集上的表现自动调整学习率。例如,在验证集上连续5个epoch的loss没有下降时,将学习率降低为原来的0.1倍: ```python import torch.optim as optim from torch.optim.lr_scheduler import ReduceLROnPlateau optimizer = optim.SGD(model.parameters(), lr=0.1) scheduler = ReduceLROnPlateau(optimizer, mode='min', factor=0.1, patience=5, verbose=True) ``` 3. CosineAnnealingLR CosineAnnealingLR是一种基于余弦函数的学习率调度,可以让学习率在训练过程中逐渐降低,并在指定的epoch数后重新开始。例如,在训练过程中,将学习率从0.1降低到0.01,然后重新开始: ```python import torch.optim as optim from torch.optim.lr_scheduler import CosineAnnealingLR optimizer = optim.SGD(model.parameters(), lr=0.1) scheduler = CosineAnnealingLR(optimizer, T_max=10, eta_min=0.01) ``` 以上是三种常见的学习率调度,可以根据需要选择合适的调度来优化模型的训练效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值