引言
在计算机视觉领域,目标检测是一项至关重要的技术。它涉及到在图像中识别并定位各种对象,这在许多实际应用中,如自动驾驶、视频监控、医疗图像分析等,都扮演着核心角色。YOLO(You Only Look Once)系列算法自从2015年首次提出以来,因其检测速度快、准确性高而广受欢迎。本文将深入探讨YOLO系列算法的发展历程,从YOLOv1到最新的YOLOv8,分析每个版本的创新点和性能改进。
YOLOv1:速度与效率的开端
YOLOv1是目标检测领域的一个里程碑,它将目标检测问题转化为一个单一的回归问题,极大地提高了检测速度。YOLOv1将输入图像划分为一个S×SS \times SS×S的网格,每个网格单元负责预测B个边界框和这些边界框包含目标的概率。YOLO

本文详细介绍了YOLO目标检测算法的发展历程,从YOLOv1的速度与效率,到YOLOv8的最新进展。每个版本都带来了性能改进,如YOLOv2的锚框机制,YOLOv4的CSPDarknet53网络和数据增强,以及YOLOv8的Efficient Decoupled Head设计,不断提升检测精度和速度。
最低0.47元/天 解锁文章
623

被折叠的 条评论
为什么被折叠?



