多类别支持向量机(Multi-class SVM)

多类别支持向量机(Multi-class SVM)是一种扩展二分类支持向量机以处理多类别分类问题的方法。常见的方法有“一对一”(one-vs-one)和“一对多”(one-vs-rest)。

一、数学模型理论推导

1.1 一对多(One-vs-Rest, OvR)

对于 K 个类别,每次训练一个分类器,将一个类别作为正类,其他类别作为负类。最终选择最大分类器得分对应的类别作为预测结果。

1.2 一对一(One-vs-One, OvO)

二、实施步骤与参数解读

2.1 选择核函数

常用的核函数有:

2.2 参数选择
  • C:控制分类错误与间隔的权衡。值越大,分类错误越少,但间隔越小,容易过拟合。
  • \gamma:控制RBF核的宽度。值越大,高斯分布越窄,模型复杂度越高,容易过拟合。

三、多维数据实例

import numpy as np
import matplotlib.pyplot as plt
from sklearn.svm import SVC
from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report
from sklearn.decomposition import PCA

# 生成新的多类别数据集
X, y = make_classification(n_samples=300, n_features=10, n_informative=5, n_redundant=5, n_classes=3, random_state=42)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

# 未优化的多类别SVM模型
model = SVC(kernel='rbf', C=1.0, gamma='scale', decision_function_shape='ovr')
model.fit(X_train, y_train)

# 预测与结果分析
y_pred = model.predict(X_test)
print("未优化模型分类报告:")
print(classification_report(y_test, y_pred))

# 使用PCA降维到2D用于可视化
pca = PCA(n_components=2)
X_test_pca = pca.fit_transform(X_test)

# 可视化结果
plt.figure(figsize=(10, 6))
plt.scatter(X_test_pca[:, 0], X_test_pca[:, 1], c=y_test, cmap='coolwarm', s=30, edgecolors='k')
plt.title("未优化的多类别SVM分类结果", fontname='KaiTi')
plt.show()

# 优化后的多类别SVM模型
model_optimized = SVC(kernel='rbf', C=10.0, gamma=0.1, decision_function_shape='ovr')
model_optimized.fit(X_train, y_train)

# 预测与结果分析
y_pred_optimized = model_optimized.predict(X_test)
print("优化后模型分类报告:")
print(classification_report(y_test, y_pred_optimized))

# 使用PCA降维到2D用于可视化
X_test_pca_optimized = pca.transform(X_test)

# 可视化结果
plt.figure(figsize=(10, 6))
plt.scatter(X_test_pca_optimized[:, 0], X_test_pca_optimized[:, 1], c=y_test, cmap='coolwarm', s=30, edgecolors='k')
plt.title("优化后的多类别SVM分类结果", fontname='KaiTi')
plt.show()

结果与解释

未优化模型
  • 分类报告显示了精度、召回率和F1分数等指标:
    • 精度(Precision):表示在所有预测为正的样本中,实际为正的比例。
    • 召回率(Recall):表示在所有实际为正的样本中,被正确预测为正的比例。
    • F1分数(F1 Score):精度和召回率的调和平均值,综合考虑了二者的表现。
  • 可视化图展示了未优化模型的分类边界和测试集数据点。不同颜色表示不同类别的样本。
优化后的模型
  • 优化后的分类报告显示了更高的精度、召回率和F1分数,表明模型性能提升。
  • 优化后的可视化图展示了改进后的分类边界,更好地分隔了数据点。

总结

通过调整多类别SVM的参数(如 C和 \gamma),可以显著提升模型的分类性能。优化后的模型在测试集上的表现优于未优化模型,分类边界更加清晰,分类效果更好。

  • 3
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
多分类支持向量机Multi-class Support Vector Machine, SVM)是一种监督学习算法,用于解决分类问题,特别适用于非线性可分数据。SVM的核心思想是找到最优的超平面来最大化类别间的间隔。在多分类问题中,通常采用一些策略如一对一(One-vs-One)、一对多(One-vs-Rest)或多元分类核方法(如线性SVM扩展到多类)。 以下是使用Python的scikit-learn库实现多分类支持向量机的一对多(One-vs-Rest)策略的一个简单示例: ```python from sklearn import svm from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split from sklearn.preprocessing import LabelBinarizer # 加载鸢尾花数据集 iris = load_iris() X = iris.data y = iris.target # 将标签转换为二进制编码 lb = LabelBinarizer() y_one_hot = lb.fit_transform(y) # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y_one_hot, test_size=0.2, random_state=42) # 创建一个One-vs-Rest的SVC分类器 multi_classifier = svm.SVC(kernel='linear', probability=True) # 训练模型 multi_classifier.fit(X_train, y_train) # 预测 y_pred = multi_classifier.predict(X_test) # 评估模型 print("Accuracy:", multi_classifier.score(X_test, y_test)) ``` 在这个例子中,我们首先加载了鸢尾花数据集,并将其标签转换为二进制表示。然后将数据划分为训练集和测试集,创建了一个SVC分类器,并指定使用线性内核。`probability=True`参数使得模型能够输出预测的概率。最后,我们训练模型并进行预测,同时计算模型的准确率。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值