目录结构:
配置文件,里面包含了一些超参数和模型设置的选项。
- "batch_size": 32,代表训练时每个batch使用的样本数。
- "patch_size": 256,代表将原始图像切成多少大小为256x256的小块进行训练。
- "valid_mode": "test",代表验证集使用的数据集,这里是test。
- "edge_decay": 0,代表去除图像边缘的程度,这里为0。
- "only_h_flip": false,代表是否只使用水平翻转数据扩增,这里为false。
- "optimizer": "adamw",代表使用的优化器,这里是AdamW。
- "lr": 4e-4/,代表学习率,这里是4e-4或2e-4。
- "epochs":300,代表训练的总epoch数。
- "eval_freq": 1,代表每多少个epoch输出一次验证集的结果,输出psnr和ssim的值。
自己训练的话,创建一个配置文件来训练。
loader.py实现了一个数据加载器。其中包括两个类:PairLoader
和 SingleLoader。
PairLoader
类用于对图像进行配对加载,即同时加载原始图像和目标图像,原始图像存放在 hazy
目录下,目标图像存放在 GT
目录下。其中 data_dir
是数据集的根目录,sub_dir
是数据集子目录(比如训练集、验证集等),mode
是数据加载模式,支持三种模式:训练模式、验证模式和测试模式。