Vision Transformers for Single Image Dehazing代码解读

目录结构:

配置文件,里面包含了一些超参数和模型设置的选项。

  • "batch_size": 32,代表训练时每个batch使用的样本数。
  • "patch_size": 256,代表将原始图像切成多少大小为256x256的小块进行训练。
  • "valid_mode": "test",代表验证集使用的数据集,这里是test。
  • "edge_decay": 0,代表去除图像边缘的程度,这里为0。
  • "only_h_flip": false,代表是否只使用水平翻转数据扩增,这里为false。
  • "optimizer": "adamw",代表使用的优化器,这里是AdamW。
  • "lr": 4e-4/,代表学习率,这里是4e-4或2e-4。
  • "epochs":300,代表训练的总epoch数。
  • "eval_freq": 1,代表每多少个epoch输出一次验证集的结果,输出psnr和ssim的值。

自己训练的话,创建一个配置文件来训练。

loader.py实现了一个数据加载器。其中包括两个类:PairLoaderSingleLoader。

PairLoader用于对图像进行配对加载,即同时加载原始图像和目标图像,原始图像存放在 hazy 目录下,目标图像存放在 GT 目录下。其中 data_dir 是数据集的根目录,sub_dir 是数据集子目录(比如训练集、验证集等),mode 是数据加载模式,支持三种模式:训练模式、验证模式和测试模式。

### 基于Transformers的图像去雾算法 #### 算法概述 基于Transformers的图像去雾技术近年来取得了显著进展。特别是Vision Transformers (ViT),其变体如Swin Transformer,在处理复杂视觉任务方面表现出色[^1]。这些模型通过自注意力机制能够捕捉输入图像中的长距离依赖关系,这对于去除大气散射效应至关重要。 #### 实现方法 对于单幅图像去雾任务,DehazeFormer是一个值得注意的例子。该工作提出了利用Transformer结构来增强特征提取过程,并有效解决了传统卷积神经网络难以充分表达远距离上下文信息的问题[^2]。具体来说: - **多尺度特征融合**:采用不同层次的感受野大小来进行多层次的信息聚合; - **局部窗口内自注意模块**:借鉴了Swin Transformer的设计理念,即在固定大小的空间区域内执行自我关注操作,从而降低了计算成本并提高了效率; - **跨通道交互层**:引入额外组件促进各维度间的数据交流,进一步提升了表示能力。 以下是Python代码片段展示如何设置数据路径参数用于训练或评估阶段: ```python import argparse def parse_args(): parser = argparse.ArgumentParser(description='Train dehazing model') parser.add_argument('--input_dir', type=str, required=True, help="Path to the folder containing 'gt' and 'hazy' subfolders.") args = parser.parse_args() return args ``` 此段脚本定义了一个命令行解析器,允许用户指定包含清晰图(`gt`)以及有雾霾干扰的照片(`hazy`)所在的目录位置[^4]。 #### 相关论文 一篇重要的学术贡献来自《IEEE Transactions on Image Processing》期刊上发表的文章——*Vision Transformers for Single Image Dehazing*。文中不仅介绍了上述提到的技术细节,还提供了详尽实验验证结果表明所提方案相比现有解决方案具有明显优势。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值