

🌈个人主页: 鑫宝Code
🔥热门专栏: 闲话杂谈| 炫酷HTML | JavaScript基础
💫个人格言: "如无必要,勿增实体"
文章目录
GBDT (Gradient Boosting Decision Tree) 深入解析
引言
GBDT,全称为Gradient Boosting Decision Tree,即梯度提升决策树,是机器学习领域中一种高效且强大的集成学习方法。它通过迭代地添加决策树以逐步降低预测误差,从而在各种任务中,尤其是回归和分类问题上表现出色。本文将深入浅出地介绍GBDT的基本原理、算法流程、关键参数调整策略以及其在实际应用中的表现与优化技巧。
一、GBDT基础理论
1.1 梯度提升算法简介
梯度提升是一种迭代的机器学习算法,其核心思想是利用前一个模型的残差(即真实值与预测值之差)作为当前模型的学习目标,通过不断添加弱学习器(通常是决策树),逐步降低训练数据的损失函数值,直至达到预设的停止条件。
1.2 决策树基础
决策树是GBDT中最常用的弱学习器。它通过一系列if-then规则对数据进行分割,每个内部节点表示一个特征上的测试,每个分支代表一个测试结果,而叶节点则存储一个预测值。决策树的构建过程包括特征选择、节点分裂等步骤,旨在最大化信息增益或基尼不纯度等分裂标准。
二、GBDT算法流程
2.1 初始化与迭代
- 初始化