【机器学习】K-Means算法详解:从原理到实践


鑫宝Code

🌈个人主页: 鑫宝Code
🔥热门专栏: 闲话杂谈炫酷HTML | JavaScript基础
💫个人格言: "如无必要,勿增实体"


K-Means算法详解:从原理到实践

在这里插入图片描述

引言

K-Means是一种广泛应用于数据挖掘、机器学习领域的无监督学习算法,主要用于聚类分析。它的核心思想是将数据集划分为K个簇(cluster),每个簇内的数据相似度较高,而不同簇间的数据相似度较低。本文将深入浅出地介绍K-Means算法的基本原理、算法流程、优缺点、参数选择、优化方法以及实际应用案例,帮助读者全面理解和掌握这一经典算法。

1. 基本原理

1.1 簇与距离度量

  • :K-Means的目标是将数据集分割成K个互不相交的子集,每个子集即为一个簇。
  • 距离度量:衡量数据点间相似度的标准,常用欧氏距离。对于高维数据,也可以采用其他距离度量方法,如曼哈顿距离、余弦相似度等。

1.2 初始化与迭代

  • 初始化:随机选择K个数据点作为初始聚类中心。
  • 迭代过程
    1. 分配:将每个数据点分配给最近的聚类中心所在的簇。
    2. 更新:根据每个簇内数据点的均值(对于连续属性)或众数(对于离散属性)重新计算聚类中心。
  • 终止条件:当聚类中心不再发生显著变化或达到预设的最大迭代次数时停止。

2. 算法流程

1. 设定聚类数量K,随机选取K个数据点作为初始质心。
2. 对于数据集中的每个数据点,计算其与所有质心的距离,将其归入最近的质心所代表的簇。
3. 重新计算每个簇的质心,方法是取簇中所有点的均值。
4. 检查质心是否发生变化。如果质心有变化,则返回步骤2;否则,结束,输出最终的簇划分结果。

以下是一个使用Python和scikit-learn库实现K-Means聚类算法的示例代码。这个例子包括了从数据准备、模型训练到结果可视化的基本流程。

首先,请确保已经安装了

### KMeans算法的工作原理 KMeans是一种基于划分的聚类方法,其目标是最小化各簇内数据点到该簇中心的距离平方和(SSE)。以下是关于KMeans算法工作原理及其核心步骤的具体描述: #### 工作流程概述 KMeans算法通过反复迭代来优化簇分配。具体来说,它从一组随机选定的初始质心出发,在每次迭代过程中重新计算每个数据点所属的簇,并更新这些簇对应的质心位置[^1]。 #### 主要实现步骤 1. **初始化阶段** - 用户需指定期望得到的簇数量 \( k \),并选取 \( k \) 个初始质心作为起点。通常情况下,这些质心是从输入数据集中随机挑选出来的若干样本点[^3]。 2. **分配最近邻簇** - 对于每一个未标记的数据对象,测量它们分别与当前已知各个簇中心之间的欧氏距离或其他相似度量标准;随后依据所得结果判定归属关系——即将每条记录指派给离自己最近的那个类别下[^4]。 3. **调整新质心坐标** - 当完成一轮完整的重分类操作之后,统计每一组成员构成的新集合,并据此求得新的均值向量充当下一回合使用的参考基准点。 4. **收敛条件判断** - 如果前后两次连续运算所形成的分群方案完全一致,则认为已经达到稳定状态可终止程序执行;否则返回第二步继续循环直至满足停止准则为止[^2]。 ```python from sklearn.cluster import KMeans import numpy as np X = np.array([[1, 2], [1, 4], [1, 0], [10, 2], [10, 4], [10, 0]]) kmeans = KMeans(n_clusters=2, random_state=0).fit(X) print(kmeans.labels_) print(kmeans.predict([[0, 0], [12, 3]])) print(kmeans.cluster_centers_) ``` 上述代码片段展示了如何利用 `scikit-learn` 库中的封装函数快速构建一个简单的二维空间内的双类别的模型实例。 ### 注意事项 尽管KMeans具备直观易懂的优点,但也存在一些局限性需要特别留意: - 它假设各类别形状均为球形分布; - 敏感依赖起始参数设定影响最终效果质量; - 不适合处理噪声干扰严重或边界模糊不清的情形。
评论 148
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

鑫宝Code

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值