【机器学习】K-Means算法详解:从原理到实践


鑫宝Code

🌈个人主页: 鑫宝Code
🔥热门专栏: 闲话杂谈炫酷HTML | JavaScript基础
💫个人格言: "如无必要,勿增实体"


K-Means算法详解:从原理到实践

在这里插入图片描述

引言

K-Means是一种广泛应用于数据挖掘、机器学习领域的无监督学习算法,主要用于聚类分析。它的核心思想是将数据集划分为K个簇(cluster),每个簇内的数据相似度较高,而不同簇间的数据相似度较低。本文将深入浅出地介绍K-Means算法的基本原理、算法流程、优缺点、参数选择、优化方法以及实际应用案例,帮助读者全面理解和掌握这一经典算法。

1. 基本原理

1.1 簇与距离度量

  • :K-Means的目标是将数据集分割成K个互不相交的子集,每个子集即为一个簇。
  • 距离度量:衡量数据点间相似度的标准,常用欧氏距离。对于高维数据,也可以采用其他距离度量方法,如曼哈顿距离、余弦相似度等。

1.2 初始化与迭代

  • 初始化:随机选择K个数据点作为初始聚类中心。
  • 迭代过程
    1. 分配:将每个数据点分配给最近的聚类中心所在的簇。
    2. 更新:根据每个簇内数据点的均值(对于连续属性)或众数(对于离散属性)重新计算聚类中心。
  • 终止条件:当聚类中心不再发生显著变化或达到预设的最大迭代次数时停止。

2. 算法流程

1. 设定聚类数量K,随机选取K个数据点作为初始质心。
2. 对于数据集中的每个数据点,计算其与所有质心的距离,将其归入最近的质心所代表的簇。
3. 重新计算每个簇的质心,方法是取簇中所有点的均值。
4. 检查质心是否发生变化。如果质心有变化,则返回步骤2;否则,结束,输出最终的簇划分结果。

以下是一个使用Python和scikit-learn库实现K-Means聚类算法的示例代码。这个例子包括了从数据准备、模型训练到结果可视化的基本流程。

首先,请确保已经安装了

评论 148
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

鑫宝Code

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值