【机器学习】K-means++: 一种改进的聚类算法详解


鑫宝Code

🌈个人主页: 鑫宝Code
🔥热门专栏: 闲话杂谈炫酷HTML | JavaScript基础
💫个人格言: "如无必要,勿增实体"


K-means++: 一种改进的聚类算法详解

在这里插入图片描述

引言

在数据分析与机器学习领域,聚类算法作为无监督学习的重要组成部分,被广泛应用于数据分组、模式识别和数据挖掘等场景。其中,K-means算法以其简单直观和高效的特点,成为最常用的聚类方法之一。然而,经典K-means算法在初始聚类中心的选择上存在随机性,可能导致算法陷入局部最优解。为解决这一问题,2007年,David Arthur 和 Sergei Vassilvitskii 提出了K-means++算法,它通过一种智能化的初始化策略显著提高了聚类质量。本文将深入探讨K-means++算法的原理、优势、实现步骤以及实际应用案例,旨在为读者提供一个全面且易于理解的K-means++算法指南。

1. K-means算法回顾

在这里插入图片描述

1.1 基本概念

K-means算法的目标是将数据集划分为K个簇(clusters),每个簇由距离其质心(centroid)最近的数据点组成。算法迭代执行以下两个步骤直至收敛:

  • 分配步骤:将每个数据点分配给最近的质心。
  • 更新步骤:重新计算每个簇的质心,即该簇所有点的均值。

1.2 局限性

  • 对初始质心敏感:随机选择的初始质心可能导致算法陷入局部最优解。
  • 不适合处理不规则形状的簇:倾向于形成球形或凸形簇。
  • 难以处理大小和密度变化较大的簇

2. K-means++算法介绍

2.1 初始质心选择策略

K-means++算法的核心改进在于其初始化过程,具体步骤如下:

  1. 从数据集中随机选择第一个质心
  2. 对于每个数据点x,计算其到已选择的所有质心的最短距离D(x)
  3. 选择一个新的数据点作为下一个质心,选择的概率与D(x)
评论 114
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

鑫宝Code

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值