

🌈个人主页: 鑫宝Code
🔥热门专栏: 闲话杂谈| 炫酷HTML | JavaScript基础
💫个人格言: "如无必要,勿增实体"
文章目录
迁移学习的实践
在上一篇文章中,我们介绍了迁移学习的基本概念和原理。本文将重点探讨迁移学习在实践中的应用,包括常见的迁移学习框架、技术细节以及一些实际案例。
迁移学习的常见框架
在深度学习时代,基于参数的迁移学习(Parameter-based Transfer Learning)成为了最常用的迁移学习方法。这种方法通常分为以下几个步骤:
- 预训练(Pre-training): 在源领域的大规模数据集上训练一个深度神经网络模型,作为基础模型。
- 模型迁移(Model Transfer): 将基础模型的部分或全部参数迁移到目标任务中,作为初始化参数。