改进YOLO系列:YOLOv5结合转置卷积,实现小目标涨点

本文介绍了如何在YOLOv5中应用转置卷积来改进小目标检测。通过2D反卷积操作,增加深度可分离的转置卷积,实现了性能和速度的优化。实验表明,使用特定大小的卷积核和深度可分离技术能取得理想的平衡。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

改进YOLO系列:YOLOv5结合转置卷积,实现小目标涨点

一、概述

该函数是用来进行转置卷积的,它主要做了这几件事:首先,对输入的feature map进行padding操作,得到新的feature map;然后,随机初始化一定尺寸的卷积核;最后,用随机初始化的一定尺寸的卷积核在新的feature map上进行卷积操作。
补充一下,卷积核确实是随机初始的,但是后续可以对卷积核进行单独的修改,比如使用双线性卷积核,这样的话卷积核的参数是固定的,不可以进行学习修改。
下面对上面的过程进行演示。

2D 反卷积;

该模块可以被视为 Conv2d 相对于其输入的梯度,也被称为分数跨步卷积或反卷积(尽管不是真正意义的反卷积,因为不计算卷积的真逆)。更多见 here 论文Deconvolutional Networks

参数

in_channels ([int]) – 输入通道数
out_channels ([int]) – 输出通道数
kernel_size ([int] or [tuple]) – 卷积核大小
stride ([int] or [tuple], optional ) – 步长,默认为1
padding ([int] or [tuple],
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一休哥※

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值