通过将 RAFT-Stereo 模型转换为 ONNX 格式,我们能够在不同的推理引擎和硬件平台上高效地部署和运行该模型,而无需依赖原始的 PyTorch 环境。这为在实际应用中使用 RAFT-Stereo 算法提供了极大的灵活性,尤其是在需要考虑性能优化和跨平台兼容性的场景中。
接下来,我们将详细讲解以下几个方面:
- 如何将 RAFT-Stereo 模型导出为 ONNX 格式
- 如何在 Python 环境中使用导出的 ONNX 模型进行推理
- 如何导出trt模型
如何将 RAFT-Stereo 模型导出为 ONNX 格式
环境设置:
tensorrt= 10
pytorch=1.13.1
cuda=11.6
vs2019
在导出onnx之前,看一下推理的代码:
def forward(self, image1, image2, iters=12, flow_init=None, test_mode=False):
""" 估计一对帧之间的光流 """
# 将图像归一化到 [-1, 1] 范围
image1 = (2 * (image1 / 255.0) - 1.0).contiguous()
image2 = (2 * (image2 / 255.0) - 1.0).contiguous()
# 运行上下文网络
with autocast(enabled=self.args.mixed_precision):
# 根据是否使用共享骨干网络选择不同的处理方式
if self.args.shared_backbone:
*cnet_list, x = self.cnet(torch.cat((image1, image2), dim=0), dual_inp=True, num_layers=self.args.n_gru_layers)
fmap1, fmap2 = self.conv2(x).split(dim=0, split_size=x.shape[0]//2)
else:
cnet_list = self.cnet(image1, num_layers=self.args.n_gru_layers)
fmap1, fmap2 = self.fnet([image1, image2])
# 处理上下文网络的输出
net_list = [torch.tanh(x[0]) for x in cnet_list]
inp_list = [torch.relu(x[1]) for x in cnet_list]
# 预先计算GRU的卷积层,以提高效率
inp_list = [list(conv(i).split(split_size=conv.out_channels//3, dim=1)) for i,conv in zip(inp_list, self.context_zqr_convs)]
# 选择相关性实现方法
if self.args.corr_implementation == "reg": # 默认方法
corr_block = CorrBlock1D
fmap1, fmap2 = fmap1.float(), fmap2.float()
elif self.args.corr_implementation == "alt": # 更节省内存的方法
corr_block = PytorchAlternateCorrBlock1D
fmap1, fmap2 = fmap1.float(), fmap2.float()
elif self.args.corr_implementation == "reg_cuda": # 更快的reg版本
corr_block = CorrBlockFast1D
elif self.args.corr_implementation == "alt_cuda": # 更快的alt版本
corr_block = AlternateCorrBlock
# 创建相关性函数
corr_fn = corr_block(fmap1, fmap2, radius=self.args.corr_radius, num_levels=self.args.corr_levels)
# 初始化光流
coords0, coords1 = self.initialize_flow(net_list[0])
if flow_init is not None:
coords