GOCI-II数据集选择Slot批量下载脚本


在这里插入图片描述

标记
  GOCI-II数据集下载脚本

运行批量下载脚本

数据集网站:
https://nosc.go.kr/opendap/hyrax/GOCI-II/
在这里插入图片描述

🌺 有批量下载数据集的需求,可以直接python运行脚本

import os
import requests
from bs4 import BeautifulSoup
from datetime import datetime, timedelta
from urllib.parse import urljoin

# 基础URL路径,指向GOCI-II数据的根目录
base_url = "https://nosc.go.kr/opendap/GOCI-II"

# 本地保存文件的目录,确保所有下载的文件存放到该文件夹中
output_folder = "GOCI_Downloads"

# 创建本地文件夹,如果文件夹不存在,则创建
os.makedirs(output_folder, exist_ok=True)

# 定义下载的日期范围,开始日期和结束日期
start_date = datetime(2021, 1, 1)  # 起始日期
end_date = datetime(2021, 1, 31)   # 结束日期

# 定义要下载的槽位列表
slots = ["S007", "S010"]  # 槽位 7 和槽位 10

# 定义产品类型
product = "TSS"  # 表示 Total Suspended Solids

# 定义文件下载的函数,增加重试机制
def download_file(file_url, local_file_path, retries=5, timeout=120):
    """
    尝试从指定URL下载文件,并保存到本地路径。支持多次重试和超时设置。
    :param file_url: 文件的远程URL
    :param local_file_path: 本地保存文件的路径
    :param retries: 下载失败时的最大重试次数
    :param timeout: 单次请求的超时时间(秒)
    :return: 下载成功返回 True,否则返回 False
    """
    for attempt in range(retries):  # 循环指定的重试次数
        try:
            # 发起HTTP GET请求下载文件,设置超时时间
            response = requests.get(file_url, stream=True, timeout=timeout)
            response.raise_for_status()  # 检查请求是否成功
            
            # 将文件内容保存到本地路径
            with open(local_file_path, "wb") as file:
                for chunk in response.iter_content(chunk_size=8192):  # 分块读取文件内容
                    file.write(chunk)
            print(f"已保存:{local_file_path}")
            return True  # 下载成功
        except requests.exceptions.RequestException as e:
            # 打印错误信息,并记录当前尝试次数
            print(f"下载失败 {file_url}(尝试 {attempt + 1}/{retries}):{e}")
            if attempt + 1 == retries:  # 如果达到最大重试次数,打印失败信息
                print(f"文件 {file_url} 在多次尝试后仍然失败。")
    return False  # 下载失败

# 遍历日期范围
current_date = start_date
while current_date <= end_date:
    # 格式化日期信息,用于构建URL路径
    year = current_date.strftime("%Y")
    month = current_date.strftime("%m")
    day = current_date.strftime("%d")
    date_str = current_date.strftime("%Y%m%d")

    # 构建日期目录的URL
    date_url = f"{base_url}/{year}/{month}/{day}/L2/"

    try:
        print(f"访问日期目录:{date_url}")  # 打印正在访问的日期目录URL
        response = requests.get(date_url, timeout=30)  # 请求日期目录的网页内容
        response.raise_for_status()  # 检查请求是否成功
        soup = BeautifulSoup(response.text, "html.parser")  # 解析网页内容为HTML

        # 查找所有子文件夹链接,链接以 "GK2" 开头
        subdirs = [
            link.get("href") for link in soup.find_all("a")
            if link.get("href") and link.get("href").startswith('GK2')
        ]

        # 遍历每个子文件夹
        for subdir in subdirs:
            subdir_url = urljoin(date_url, subdir)  # 构建完整的子文件夹URL
            try:
                print(f"访问子目录:{subdir_url}")  # 打印正在访问的子目录URL
                subdir_response = requests.get(subdir_url, timeout=30)  # 请求子目录网页内容
                subdir_response.raise_for_status()  # 检查请求是否成功
                subdir_soup = BeautifulSoup(subdir_response.text, "html.parser")  # 解析网页内容

                # 查找所有文件链接,文件名以 ".nc" 结尾
                files = [
                    link.get("href") for link in subdir_soup.find_all("a")
                    if link.get("href") and link.get("href").endswith('.nc')
                ]

                # 遍历匹配的文件名
                for file_name in files:
                    if "_LA_" in file_name and date_str in file_name:  # 检查文件名中包含日期和"_LA_"
                        for slot in slots:
                            if f"_{slot}_" in file_name and f"_{product}.nc" in file_name:
                                # 构建完整的文件URL
                                file_url = urljoin(subdir_url, file_name)
                                if "viewers" in file_url:  # 跳过无效的查看器链接
                                    print(f"跳过无效的查看器链接:{file_url}")
                                    continue

                                # 构建本地保存路径,确保文件夹存在
                                local_file_folder = os.path.join(output_folder, year, month, day, slot)
                                os.makedirs(local_file_folder, exist_ok=True)
                                local_file_path = os.path.join(local_file_folder, file_name)

                                # 下载文件
                                print(f"正在下载:{file_url}")
                                download_file(file_url, local_file_path)
                                break  # 找到匹配文件后跳出槽位循环

            except requests.exceptions.RequestException as e:
                print(f"无法访问子目录 {subdir_url}{e}")  # 捕获子目录访问失败的错误

    except requests.exceptions.RequestException as e:
        print(f"无法访问日期目录 {date_url}{e}")  # 捕获日期目录访问失败的错误

    # 日期加一天
    current_date += timedelta(days=1)

print("所有指定的文件已下载完成!")  # 打印下载完成的提示

🍕直接可以下载需要的数据,实现自动批量下载
🎂根据自己的实际需要修改变量名称、时间、slot

下载结果

命令下载后输出的结果图

在这里插入图片描述

实现批量下载GOCI-II数据集

### 如何下载 GOCI 数据 #### 下载流程 要获取 GOCI-II 的数据,可以访问其官方网站并按照以下方法操作。进入官网后,在导航栏找到 **Data Download** 部分[^1]。具体路径为: - 访问 [GOCI-II 官网](https://www.nosc.go.kr/eng/main.do)[^1]。 - 转至页面中的 “GOCI-II LA Downloads” 板块。 - 在该板块下选择所需的数据级别(Level),例如 L3 海表温度 (SST) 数据。 - 设置查询条件,包括日期范围和其他筛选项。 - 点击 🔍 图标执行搜索。 完成上述步骤后,系统会显示符合条件的数据列表供用户下载。 #### 时间分辨率特性 值得注意的是,GOCI-II 提供的时间分辨率为每小时一次,覆盖每日 8 至 15 时段内的八个时刻观察记录[^2]。这种高频率采集有助于减少因云层干扰而产生的误差,并增强对特定地理区域内海洋动态现象的研究能力。 以下是 Python 实现自动爬取部分元数据的一个简单例子: ```python import requests from bs4 import BeautifulSoup def fetch_goci_metadata(url): response = requests.get(url) soup = BeautifulSoup(response.text, 'html.parser') metadata_list = [] for item in soup.find_all('div', class_='data-item'): title = item.find('span', class_='title').text.strip() date = item.find('span', class_='date').text.strip() link = item.find('a')['href'] metadata_list.append({ 'Title': title, 'Date': date, 'Link': link }) return metadata_list url = "https://example.com/goci-data" metadata = fetch_goci_metadata(url) for entry in metadata: print(f"Title: {entry['Title']}, Date: {entry['Date']}") ``` 此脚本仅作为演示用途展示如何通过编程方式提取网页上的基本信息,请依据实际需求调整 URL 和 HTML 结构分析逻辑。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一休哥※

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值