【统计检验-参数方差分析】方差分析及其MATLAB代码实现

本文详细介绍了方差分析(ANOVA)的定义、分类,并通过MATLAB代码展示了单因素一元、双因素一元、多因素一元以及单因素多元方差分析的实现过程,包括正态性检验、方差齐性检验和多重比较。通过案例分析了不同因素对连续响应变量的影响,强调了正态性和方差齐性的前提条件。


方差分析(Analysis of Variance,简称ANOVA)是一种统计方法,用于比较三个或三个以上组(或处理)之间的均值是否存在显著差异。它是一种用于处理多个组之间差异的方法,通常用于以下情况:

  • 比较多个处理组(例如,不同药物的疗效,不同肥料的生长效果等)是否具有统计显著性。
  • 比较多个因素对于一个连续的响应变量(因变量)是否有显著影响,例如,考察不同年份、不同地区和不同气象因素对于农作物产量的影响。

方差分析(Analysis of Variance,ANOVA)

方差分析的定义

方差分析(Analysis of Variance,简称ANOVA),又称“变异数分析”,是英国统计学家R.A.Fisher在20世纪20年代发明的,用于两个及两个以上样本均数差别的显著性检验。
由于各种因素的影响,研究所得的数据呈现波动状。造成波动的原因可分成两类,一是不可控的随机因素,另一是研究中施加的对结果形成影响的可控因素。

方差分析的分类

分类1:按影响分析指标的因素个数

方差分析按影响分析指标的因素(也可简单成为 自变量)个数的多少,分为单因素方差分析(one-way ANOVA)、双因素方差分析、三因素方差分析 (两个或多个因素,称为多因素方差分析,multi-way ANOVA)。

在多因素方差分析中,把单个因素在不同水平下产生的不同实验结果成为主效应(main ef

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

WW、forever

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值