参数方差分析及其MATLAB代码实现
方差分析(Analysis of Variance,简称ANOVA)是一种统计方法,用于比较三个或三个以上组(或处理)之间的均值是否存在显著差异。它是一种用于处理多个组之间差异的方法,通常用于以下情况:
- 比较多个处理组(例如,不同药物的疗效,不同肥料的生长效果等)是否具有统计显著性。
- 比较多个因素对于一个连续的响应变量(因变量)是否有显著影响,例如,考察不同年份、不同地区和不同气象因素对于农作物产量的影响。
方差分析(Analysis of Variance,ANOVA)
方差分析的定义
方差分析(Analysis of Variance,简称ANOVA),又称“变异数分析”,是英国统计学家R.A.Fisher在20世纪20年代发明的,用于两个及两个以上样本均数差别的显著性检验。
由于各种因素的影响,研究所得的数据呈现波动状。造成波动的原因可分成两类,一是不可控的随机因素,另一是研究中施加的对结果形成影响的可控因素。
方差分析的分类
分类1:按影响分析指标的因素个数
方差分析按影响分析指标的因素(也可简单成为 自变量)个数的多少,分为单因素方差分析(one-way ANOVA)、双因素方差分析、三因素方差分析 (两个或多个因素,称为多因素方差分析,multi-way ANOVA)。
在多因素方差分析中,把单个因素在不同水平下产生的不同实验结果成为主效应(main ef