【数据集7】全球人类住区层GHSL数据详解

本文详细介绍了全球人类住区层Global Human Settlement Layer,包括GHS-SMOD和GHS-POP两个子层,涵盖了1975年至2030年的数据,空间分辨率分别为1km和100m,坐标系统为Mollweide。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

全球人类住区层Global Human Settlement Layer

官网地址-GHSL - Global Human Settlement Layer
在这里插入图片描述

1 全球人类住区层GHS-SMOD

Global human settlement layer-settlement model grid (GHS-SMOD):描述
在这里插入图片描述

  • epoch时段: 1975-2030年 5年一个周期
  • resolution空间分辨率: 1km/30弧秒
  • coordinate system: Mollweide

表 GHS-SMOD中8种居住类型及对应代码

Class Type类型
### 关于全球建筑物高度数据集 目前并没有直接名为“Global Building Height Dataset”的公开数据集专门提供全球范围内建筑物的高度信息。然而,可以考虑一些替代方案来获取类似的建筑高度数据。 #### 替代方法一:利用卫星影像和LiDAR技术 通过结合高分辨率的卫星影像以及LiDAR(光探测与测距)技术,可以从三维地形模型中提取建筑物的高度信息。这种方法通常依赖于地理空间数据分析工具,例如ArcGIS或QGIS,并可能涉及以下步骤: - 使用OpenStreetMap (OSM) 提供的基础地图数据作为补充[^1]。 - 利用像Objects365这样的大型多类别标注数据集辅助训练深度学习算法,从而提高对复杂城市环境的理解能力。 对于下载这些遥感资料的方式之一就是通过云存储服务提供的URL集合来进行批量抓取[^2]。 #### 替代方法二:基于已有研究项目成果 某些科研团队可能会发布他们收集整理好的特定区域内的建筑尺寸数据库。比如欧洲委员会联合研究中心(JRC)曾发起过一个关于估算全世界住宅楼数目的计划——"JRC Global Human Settlement Layer" (GHSL),虽然其主要目的是为了人口分布建模而非单纯测量楼房高低,但仍可从中推导部分有用的信息。 另外值得注意的是,在自然语言处理领域里使用的Transformer架构里的编码机制也可能被借鉴过来改进传统计算机视觉任务的效果,比如在解析复杂的街景图片时更加精准地标记出每栋房子的具体数值特征等等[^3]。 ```python import requests def download_files_from_urls(url_list, destination_folder): for url in url_list: response = requests.get(url) file_name = url.split('/')[-1] with open(f"{destination_folder}/{file_name}", 'wb') as f: f.write(response.content) # Example usage urls_to_download = ["http://example.com/data/file1.zip", "http://example.com/data/file2.zip"] download_location = "/path/to/save/files" download_files_from_urls(urls_to_download, download_location) ``` 上述脚本展示了一个简单的函数定义用来实现从给定列表中的链接地址逐一读取文件内容并保存至本地指定目录下的功能演示。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

WW、forever

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值