土地利用回归(LUR)建模详解

土地利用回归(LUR)建模全解析

一、LUR 模型的基本原理

土地利用回归(Land Use Regression, LUR)是一种统计建模方法,用于预测空间上连续变化的环境变量(如空气污染、温度等)。其基本思想是:

利用已知测量点的环境变量(如温度、污染物浓度)与该点周边地理特征之间的关系,构建回归模型,然后应用该模型推算未测量点的值。

LUR 模型假设:

  • 空间中某一环境变量的变化可以通过一系列地理或人为特征(如道路密度、绿地覆盖率、水体距离、高度等)解释;
  • 这种关系是统计上的,通常使用线性回归建立模型。

二、LUR 建模的一般步骤

1. 数据采集
响应变量:如空气温度、NO₂、PM₂.₅ 浓度等,需在多个采样点测量。

本文中:使用步行方式在 20 条路线共 42 次运行中,以 10 秒间隔测量微尺度空气温度(<100m)。

解释变量(自变量):从遥感、地图、城市数据库中提取,包括:

  • 归一化植被指数(NDVI)
  • 归一化水体指数(NDWI)
  • 距离主要道路
  • 距离大水体(如海洋)
  • 天空可视因子(SVF)
  • 高程等

2. 变量预处理与

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

WW、forever

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值