🌍 土地利用回归(LUR)建模详解
一、LUR 模型的基本原理
土地利用回归(Land Use Regression, LUR)是一种统计建模方法,用于预测空间上连续变化的环境变量(如空气污染、温度等)。其基本思想是:
利用已知测量点的环境变量(如温度、污染物浓度)与该点周边地理特征之间的关系,构建回归模型,然后应用该模型推算未测量点的值。
LUR 模型假设:
- 空间中某一环境变量的变化可以通过一系列地理或人为特征(如道路密度、绿地覆盖率、水体距离、高度等)解释;
- 这种关系是统计上的,通常使用线性回归建立模型。
二、LUR 建模的一般步骤
1. 数据采集
响应变量:如空气温度、NO₂、PM₂.₅ 浓度等,需在多个采样点测量。
本文中:使用步行方式在 20 条路线共 42 次运行中,以 10 秒间隔测量微尺度空气温度(<100m)。
解释变量(自变量):从遥感、地图、城市数据库中提取,包括:
- 归一化植被指数(NDVI)
- 归一化水体指数(NDWI)
- 距离主要道路
- 距离大水体(如海洋)
- 天空可视因子(SVF)
- 高程等
2. 变量预处理与