《实变函数简明教程》,P60,定义3.2中的简单函数的四则运算封闭性

一、简单函数的定义:P60,定义3.2

  若函数 φ \varphi φ定义在 E ⊂ R n E\subset { {\mathbb{R}}^{n}} ERn上,只取有限个不同的值 a 1 , a 2 , ⋯   , a k { {a}_{1}},{ {a}_{2}},\cdots ,{ {a}_{k}} a1,a2,,ak,并对每一个 i i i,取值 a i { {a}_{i}} ai的点集 E i ( = { x ∈ E :   φ ( x ) = a i } ) { {E}_{i}}\left( =\left\{ x\in E:\text{ }\varphi \left( x \right)={ {a}_{i}} \right\} \right) Ei(={ xE: φ(x)=ai})都是可测集,则称 φ \varphi φ E E E上的简单函数。
注:由 E = ⋃ i = 1 k E i E=\bigcup\limits_{i=1}^{k}{ { {E}_{i}}} E=i=1kEi和课本P49的定理2.2,定义域 E E E这时一定也是可测集。

二、简单函数的标准表示式:P60

  一方面,简单函数 φ \varphi φ都可表示为如下的可测集的特征函数的线性组合
φ ( x ) = ∑ i = 1 k a i χ E i ( x ) , 其 中 χ E i ( x ) = { 1 ,   x ∈ E i , 0 ,   x ∈ E i c , , a i ∈ R , k < ∞ (*) \varphi \left( x \right)=\sum\limits_{i=1}^{k}{ { {a}_{i}}{ {\chi }_{ { {E}_{i}}}}\left( x \right)},其中{ {\chi }_{ { {E}_{i}}}}\left( x \right)=\left\{ \begin{aligned} & 1,\text{ }x\in { {E}_{i}}, \\ & 0,\text{ }x\in { {E}_{i}}^{c}, \\ \end{aligned} \right.,{ {a}_{i}}\in \mathbb{R},k < \infty \tag{*} φ(x)=i=1kaiχEi(x)χEi(x)={ 1, xEi,0, xEic,aiRk<(*)
( ∗ ) \left( * \right) ()中要求

  1. 各个 E i { {E}_{i}} Ei可测;
  2. i ≠ j i\ne j i=j E i ∩ E j = ∅ { {E}_{i}}\cap { {E}_{j}}=\varnothing EiEj=
  3. E = ⋃ i = 1 k E i E=\bigcup\limits_{i=1}^{k}{ { {E}_{i}}} E=i=1kEi
  4. i ≠ j i\ne j i=j a i ≠ a j { {a}_{i}}\ne { {a}_{j}} ai=aj

此时式 ( ∗ ) \left( * \right) ()称为简单函数 φ \varphi φ的标准分解式。若还要求
a 1 < a 2 < ⋯   , { {a}_{1}}<{ {a}_{2}}<\cdots , a1<a2<,
则此时式(*)的写法是唯一的。

  另一方面,显然地,根据简单函数的定义,凡是能表示成式 ( ∗ ) \left( * \right) ()的函数 φ \varphi φ都是 E E E上的简单函数。

三、四则运算封闭性的具体内容

  若 φ ,   ψ \varphi ,\text{ }\psi φ, ψ都是集合 E E E上的简单函数,则
a φ ± b ψ ( 其 中 a ,   b 是 实 常 数 ) , φ ⋅ ψ , φ / ψ ( 假 定 在 E 上 每 一 点 都 有 意 义 ) a\varphi \pm b\psi (其中a,\text{ }b是实常数),\varphi \centerdot \psi ,\varphi /\psi (假定在E上每一点都有意义) aφ±bψa, bφψφ/ψE
均为 E E E上的简单函数。

四、四则运算封闭性的证明(已知 φ \varphi φ ψ \psi ψ是简单函数)

E E E上的简单函数 φ \varphi φ ψ \psi ψ的标准表示式分别为
φ ( x ) = ∑ i = 1 m c i χ M i ( x ) ;   x ∈ E = ⋃ i = 1 m M i ;   0 ≤ c 1 < c 2 < ⋯   ;   ∀ i 1 ≠ i 2 ,   M i 1 ∩ M i 2 = ∅ ; 各 M i 可 测 . ψ ( x ) = ∑ j = 1 n d j χ N j ( x ) ;   x ∈ E = ⋃ j = 1 n N j ;   0 ≤ d 1 < d 2 < ⋯   ;   ∀ j 1 ≠ j 2 ,   N j 1 ∩ N j 2 = ∅ ; 各 N j 可 测 . (*) \begin{aligned} & \varphi \left( x \right)=\sum\limits_{i=1}^{m}{ { {c}_{i}}{ {\chi }_{ { {M}_{i}}}}\left( x \right)};\text{ }x\in E=\bigcup\limits_{i=1}^{m}{ { {M}_{i}}};\text{ }0\le { {c}_{1}}<{ {c}_{2}}<\cdots ;\text{ }\forall { {i}_{1}}\ne { {i}_{2}},\text{ }{ {M}_{ { {i}_{1}}}}\cap { {M}_{ { {i}_{2}}}}=\varnothing ;各{ {M}_{i}}可测. \\ & \psi \left( x \right)=\sum\limits_{j=1}^{n}{ { {d}_{j}}{ {\chi }_{ { {N}_{j}}}}\left( x \right)};\text{ }x\in E=\bigcup\limits_{j=1}^{n}{ { {N}_{j}}};\text{ }0\le { {d}_{1}}<{ {d}_{2}}<\cdots ;\text{ }\forall { {j}_{1}}\ne { {j}_{2}},\text{ }{ {N}_{ { {j}_{1}}}}\cap { {N}_{ { {j}_{2}}}}=\varnothing ;各{ {N}_{j}}可测. \\ \tag{*} \end{aligned} φ(x)=i=1mciχMi(x); xE=i=1mMi; 0c1<c2<; i1=i2, Mi1Mi2=;Mi.ψ(x)=j=1ndjχNj(x); xE=j=1nNj

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

此账号已停更

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值