实变函数
文章平均质量分 91
主要收录一些学习实变函数过程中的理解、习题。
此账号已停更
这个作者很懒,什么都没留下…
展开
-
命题p(x)在点集E上几乎处处成立 蕴涵 p(x)在E的任意子集F上也几乎处处成立
本文直接由命题p(x)在E上几乎处处成立 推导出 其必要条件,该必要条件的性质体现在E的任一子集F上。原创 2021-06-24 22:20:05 · 647 阅读 · 0 评论 -
命题p(x)在点集E上几乎处处成立 等价于 {x∈E: p(x)不成立}是一个零测集
本文由命题p在点集E上几乎处处成立的定义作出一个比较实用的等价推论。原创 2021-06-24 17:43:59 · 492 阅读 · 0 评论 -
《实变函数简明教程》,P114,第7题(积分具有绝对连续性 推导 Lebesgue可积)
本文是对教材课后一道例题的解答。该例题使用三个限制条件:可测集有界;函数可测;函数Lebesgue积分具有绝对连续性,来推导出函数Lebesgue可积的结论,揭示了函数Lebesgue可积的一种充分条件。原创 2021-06-20 02:42:15 · 5023 阅读 · 0 评论 -
《实变函数简明教程》,第四章:Lebesgue积分,非负可测函数列的Lebesgue积分极限为0 推导 依测度收敛于0
非负可测函数列的Lebesgue积分极限属于第四章:Lebesgue积分的内容,而依测度收敛属于第三章:可测函数的内容。前者可以推导出后者,我们发现这个命题可以将第三章与第四章的一些内容联系起来。原创 2021-06-20 00:44:50 · 1258 阅读 · 0 评论 -
《实变函数简明教程》,P115,第14题(利用Lebesgue控制收敛定理求函数列Lebesgue积分的极限)
教材P97页介绍了求解函数列Lebesgue积分极限的一种方法:Lebesgue控制收敛定理,将取极限操作转入积分号下进行。本文用此方法尝试解决两道相关习题。原创 2021-06-19 23:45:39 · 2919 阅读 · 0 评论 -
《实变函数简明教程》,P115,第13题(Lebesgue逐项积分定理 推导 Levi定理)
教材P115的第13题揭示了:P1. Levi定理;P2. Lebesgue逐项积分定理;P3. Fatou引理;P4. Lebesgue控制收敛定理,这四个定理是互相等价的。在本文中我们完成其中的一部分工作:由 Lebesgue逐项积分定理 推导 Levi定理。原创 2021-06-19 22:13:44 · 2146 阅读 · 0 评论 -
《实变函数简明教程》,P114,第4题(大小几乎处处介于两个可积函数之间的可测函数也是Lebesgue可积)
本篇博文是对一道例题的解答。该例题借助目标函数夹于另外两个Lebesgue可积函数之间的不等式关系来推导目标函数也是Lebesgue可积,揭示了一个可测函数Lebesgue可积的一个充分条件。原创 2021-06-19 13:13:08 · 420 阅读 · 0 评论 -
《实变函数简明教程》,P91,定理4.8(iii)(对等的可测函数同时可积或同时不可积)
对于课本P91页的定理4.8(iii),为了研究可测集上对等的两个可测函数f, g的Lebesgue可积性之间的关系,我们先证明若其中一个函数可积,则另一个函数也可积。在此基础上,通过反证法证明若其中一个函数不可积,则另一个函数也不可积。从而我们得出这两个对等的可测函数保有相同的可积性的结论。原创 2021-06-19 12:32:37 · 642 阅读 · 0 评论 -
《实变函数简明教程》,第四章:Lebesgue积分,在可测集E上Lebesgue可积的函数f在E的可测子集F上仍Lebesgue可积
E是可测集,F是E的一个可测子集。若可测函数f在E上Lebesgue可积,那么f在F上是否也是Lebesgue可积?我们都比较倾向于肯定的回答。但是这个命题在教材中没有直接讨论和涉及到,可能给后面的思考带来麻烦,故于此作个记录和证明。原创 2021-06-19 02:34:38 · 1494 阅读 · 0 评论 -
《实变函数简明教程》,第四章:Lebesgue积分,在可测集E上Lebesgue积分有意义的函数f在E的可测子集F上仍有Lebesgue积分
E是可测集,F是E的一个可测子集。若可测函数f在E上有Lebesgue积分,那么f在F上是否也有Lebesgue积分?我们都比较倾向于肯定的回答。但是这个命题在教材中没有直接讨论和涉及到,可能给后面的思考带来麻烦,故于此作个记录和证明。原创 2021-06-19 01:48:06 · 609 阅读 · 0 评论 -
《实变函数简明教程》,P91,定理4.8(ii)(零测集上的任意广义实值函数Lebesgue可积且积分值为0)
课本P91页的定理4.8(ii)提及到 若f是零测集E上的任意广义实值函数,则其Lebesgue可积且积分值为0. 在已经证明了 f是非负简单函数,f是非负实值函数的基础上,我们在此证明该命题。原创 2021-06-18 22:52:58 · 1588 阅读 · 0 评论 -
《实变函数简明教程》,第四章:Lebesgue积分,零测集上的任意非负实值函数Lebesgue可积且积分值为0
课本P91页的定理4.8(ii)提及到 若f是零测集E上的任意广义实值函数,则其Lebesgue可积且积分值为0. 为了证明此命题,参考广义实值函数的Lebesgue积分定义,我们接着从 f是非负实值函数 的情况入手。原创 2021-06-18 22:35:12 · 2301 阅读 · 0 评论 -
《实变函数简明教程》,第四章:Lebesgue积分,零测集上的任意非负简单函数Lebesgue可积且积分值为0
课本P91页的定理4.8(ii)提及到 若f是零测集E上的任意广义实值函数,则其Lebesgue可积且积分值为0. 为了证明此命题,参考广义实值函数的Lebesgue积分定义,我们先从 f是非负简单函数的情况入手。原创 2021-06-18 22:19:53 · 2131 阅读 · 0 评论 -
《实变函数简明教程》,P84,定理4.1(v)(非负简单函数的不等式关系 推导 相应的Lebesgue积分不等式关系)
对教材中的一个小定理的证明:由两个非负简单函数的不等式关系 推导 相应的Lebesgue积分不等式关系。原创 2021-06-18 20:00:50 · 364 阅读 · 0 评论 -
《实变函数简明教程》,P60,定义3.2中的简单函数的四则运算封闭性
《实变函数简明教程》中没有直接指出简单函数的四则运算是否是封闭的,故于此处稍作证明。设f, g是一个简单函数,博文内容包含证明 c*f(c是实常数),f+g, af+bg, f*g, 1/g, f/g是简单函数的证明。原创 2021-06-18 19:15:01 · 992 阅读 · 0 评论 -
《实变函数简明教程》,第一章:集合与点集,可列个互不相交的有界闭集的并集不一定是闭集的一个反例
某一次考试中 出现了 可列个互不相交的有界闭集的并集一定是闭集 的题目要求我们证明。当时一时半会搞不出来,后来欲通过举例子刺激证明思路,却发现题目本身的命题就是不成立的,故作此记录。原创 2021-06-18 17:18:36 · 1261 阅读 · 0 评论 -
《实变函数简明教程》,第四章:Lebesgue积分,第4.1节-第4.3节,P82-P100,定理整理
对教材 第四章:Lebesgue积分 中第4.1, 4.2, 4.3节中标明的定理作一个单独的汇总,涉及非负简单函数、非负可测函数、一般可测函数的Lebesgue积分。原创 2021-06-16 11:31:49 · 614 阅读 · 0 评论 -
《实变函数简明教程》,第四章:Lebesgue积分,P82-P113,定义整理
对教材第四章:Lebesgue积分中所标明的定义单独整理出来,整个第四章就只有非负简单函数、非负可测函数、一般可测函数的Lebesgue积分定义共三条。原创 2021-06-16 03:10:46 · 628 阅读 · 0 评论 -
《实变函数简明教程》,第三章:可测函数,P58-P78,定理整理
将 可测函数 一章里面的定理单独整理出来。(仍可继续补充)原创 2021-06-16 01:30:15 · 983 阅读 · 0 评论 -
《实变函数简明教程》,第三章:可测函数,P58-P78,定义整理
对“可测函数”一章中的定义单独列出来。(仍可继续补充)原创 2021-06-15 22:09:28 · 773 阅读 · 0 评论 -
《实变函数简明教程》,第三章:可测函数,连续函数复合可测函数是可测函数
《实变函数简明教程》(邓东皋,常心怡编),第三章:可测函数,关于 连续函数复合可测函数是可测函数 的说明。对教材内容的一点注解。原创 2021-06-14 18:59:15 · 2203 阅读 · 3 评论 -
《实变函数简明教程》,P79,第18题(依测度收敛 推导 几乎处处收敛)
《实变函数简明教程》(邓东皋,常心怡编),第三章:可测函数,P79,第18题(依测度收敛 推导 几乎处处收敛)。对教材课后习题的解答。原创 2021-06-14 18:30:38 · 2340 阅读 · 2 评论 -
《实变函数简明教程》,P79,第8题([a, b]上可微函数的导函数是可测函数)
《实变函数简明教程》(邓东皋,常心怡编),第三章:可测函数,P79,第8题([a, b]上可微函数的导函数是可测函数)。对教材内容的一点注释。原创 2021-06-13 19:32:11 · 1553 阅读 · 0 评论 -
《实变函数简明教程》,P63,可测集上的连续函数一定可测
《实变函数简明教程》(邓东皋,常心怡编),第三章:可测函数,P63,关于 可测集上的连续函数一定可测 的说明。对教材内容的一点注释。原创 2021-06-13 19:19:47 · 4190 阅读 · 1 评论 -
《实变函数简明教程》,P78,第5题(判断函数可测性)
《实变函数简明教程》(邓东皋,常心怡编),第三章:可测函数,P78,第5题(判断函数可测性)。教材课后习题的解答。原创 2021-06-13 18:21:56 · 439 阅读 · 0 评论 -
《实变函数简明教程》,P78,第16题(依测度收敛 推导 依测度收敛,几乎处处小于 推导 几乎处处小于)
《实变函数简明教程》(邓东皋,常心怡编),第三章:可测函数,P78,第16题(依测度收敛 推导 依测度收敛,几乎处处小于 推导 几乎处处小于)。对教材课后习题的解答。原创 2021-06-13 17:13:15 · 778 阅读 · 0 评论 -
《实变函数简明教程》,P69,定义3.3(依测度收敛)中定义式的测度存在性
《实变函数简明教程》(邓东皋,常心怡编),第三章:可测函数,P69,关于 定义3.3(依测度收敛)中定义式的测度存在性 的分析。对教材内容的一段注释。原创 2021-06-13 13:47:39 · 442 阅读 · 0 评论 -
《实变函数简明教程》,P63,f可测等价于f+,f-均可测 以及 f可测蕴涵|f|可测
《实变函数简明教程》(邓东皋,常心怡编),第三章:可测函数,P63,关于 f可测等价于f+,f-均可测 以及 f可测蕴涵|f|可测 的分析。对教材内容的注释原创 2021-06-13 13:23:02 · 1584 阅读 · 0 评论 -
《实变函数简明教程》,P78,第3题(判断函数可测性)
《实变函数简明教程》(邓东皋,常心怡编),第三章:可测函数,P78,第3题(判断函数可测性)。教材课后习题的解答。原创 2021-06-12 20:30:42 · 600 阅读 · 0 评论 -
《实变函数简明教程》,P78,第2题(判断函数可测性)
《实变函数简明教程》(邓东皋,常心怡编),第三章:可测函数,P78,第2题(判断函数可测性)。属教材课后习题的解答。原创 2021-06-12 19:05:08 · 421 阅读 · 0 评论