初等数论 课堂笔记 第四章 -- 一次同余式

同余式定义

   m ∈ Z > 0 m\in { {\mathbb{Z}}_{>0}} mZ>0 a i ∈ Z { {a}_{i}}\in \mathbb{Z} aiZ f ( x ) = a n x n + a n − 1 x n − 1 + ⋯ + a 1 x + a 0 f\left( x \right)={ {a}_{n}}{ {x}^{n}}+{ {a}_{n-1}}{ {x}^{n-1}}+\cdots +{ {a}_{1}}x+{ {a}_{0}} f(x)=anxn+an1xn1++a1x+a0,称
f ( x ) ≡ 0 (   m o d   m ) f\left( x \right)\equiv 0\left( \bmod m \right) f(x)0(modm)
为模 m m m的同余式。若 a n ≡ 0 (   m o d   m ) { {a}_{n}}\cancel{\equiv }0\left( \bmod m \right) an 0(modm),则称 n n n为该同余式的次数。

定理: ∃ a ∈ Z ,   f ( a ) ≡ 0 (   m o d   m )   ⇔   ∀ x ≡ a (   m o d   m ) ,   f ( x ) ≡ 0 (   m o d   m ) \exists a\in \mathbb{Z},\text{ }f\left( a \right)\equiv 0\left( \bmod m \right)\text{ }\Leftrightarrow \text{ }\forall x\equiv a\left( \bmod m \right),\text{ }f\left( x \right)\equiv 0\left( \bmod m \right) aZ, f(a)0(modm)  xa(modm), f(x)0(modm)

证明

  1. ( ⇐ ) \left( \Leftarrow \right) ()
    a ≡ a (   m o d   m ) a\equiv a\left( \bmod m \right) aa(modm),推理是显然的。
  2. ( ⇒ ) \left( \Rightarrow \right) ()
    ∀ x ≡ a (   m o d   m ) ,   x − a ≡ 0 (   m o d   m )   ⇒   m ∣ ( x − a )   ⇒   ∃ k ∈ Z ,   s . t . \forall x\equiv a\left( \bmod m \right),\text{ }x-a\equiv 0\left( \bmod m \right)\text{ }\Rightarrow \text{ }\left. m \right|\left( x-a \right)\text{ }\Rightarrow \text{ }\exists k\in \mathbb{Z},\text{ }s.t. xa(modm), xa0(modm)  m(xa)  kZ, s.t.
    x − a = k m   ⇔   a = x − k m x-a=km\text{ }\Leftrightarrow \text{ }a=x-km xa=km  a=xkm
    f ( a ) ≡ 0 ⇒ 0 ≡ f ( x − k m ) = a 0 + ∑ j = 1 n a j ( x − k m ) j ≡ a 0 + ∑ j = 1 n ( x − 0 ) j = ∑ j = 0 n a j x j = f ( x )     m o d   m \begin{matrix} f\left( a \right)\equiv 0 \\ \begin{aligned} & \Rightarrow 0\equiv f\left( x-km \right)={ {a}_{0}}+\sum\limits_{j=1}^{n}{ { {a}_{j}}{ {\left( x-km \right)}^{j}}} \\ & \equiv { {a}_{0}}+\sum\limits_{j=1}^{n}{ { {\left( x-0 \right)}^{j}}}=\sum\limits_{j=0}^{n}{ { {a}_{j}}{ {x}^{j}}}=f\left( x \right)\text{ }\bmod m \\ \end{aligned} \\ \end{matrix} f(a)00f(xkm)=a0+j=1naj(xkm)ja0+j=1n(x0)j=j=0najxj=f(x) modm

定理: 一次同余式 a x ≡ b (   m o d   m ) ,   a ≡ 0 (   m o d   m ) ax\equiv b\left( \bmod m \right),\text{ }a\cancel{\equiv }0\left( \bmod m \right) axb(modm), a 0(modm)有(整数)解 ⇔ gcd ⁡ ( a , m ) ∣ b \Leftrightarrow \left. \gcd \left( a,m \right) \right|b gcd(a,m)b

证明
  a x ≡ b (   m o d   m ) ⇔ a x − b ≡ 0 (   m o d   m ) ⇔ m ∣ ( a x − b ) ⇔ ∃ y ∈ Z ,  s.t .   a x − b = m y ⇔ a x − m y = b \begin{aligned} & \text{ }ax\equiv b\left( \bmod m \right) \\ & \Leftrightarrow ax-b\equiv 0\left( \bmod m \right) \\ & \Leftrightarrow \left. m \right|\left( ax-b \right) \\ & \Leftrightarrow \exists y\in \mathbb{Z},\text{ s}\text{.t}.\text{ }ax-b=my \\ & \Leftrightarrow ax-my=b \\ \end{aligned}  axb(modm)axb0(modm)m(axb)yZ, s.t. axb=myaxmy=b
a x − m y = b ax-my=b axmy=b有解 ⇔ gcd ⁡ ( a , − m ) = gcd ⁡ ( a , m ) ∣ b \Leftrightarrow \gcd \left( a,-m \right)=\left. \gcd \left( a,m \right) \right|b gcd(a,m)=gcd(a,m)b

例题与练习

  1. 解同余式
    4 x ≡ 13     m o d   47 4x\equiv 13\text{ }\bmod 47 4x13 mod47

       gcd ⁡ ( 4 , 47 ) = 1 ∣ 13 \gcd \left( 4,47 \right)=\left. 1 \right|13 gcd(4,47)=113,因此同余式有解。
    4 x ≡ 13     m o d   47 ⇔ ( 4 x ⋅ 12 ) ≡ ( 13 × 12 ) = 156 ≡ 15     m o d   47 ⇔ 48 x ≡ 15     m o d   47 ⇔ x ≡ 15     m o d   47   ( ∵ 48 = 47 × 1 + 1 ) \begin{aligned} & 4x\equiv 13\text{ }\bmod 47 \\ & \Leftrightarrow \left( 4x\centerdot 12 \right)\equiv \left( 13\times 12 \right)=156\equiv 15\text{ }\bmod 47 \\ & \Leftrightarrow 48x\equiv 15\text{ }\bmod 47 \\ & \Leftrightarrow x\equiv 15\text{ }\bmod 47\text{ }\left( \because 48=47\times 1+1 \right) \\ \end{aligned} 4x

  • 5
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

此账号已停更

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值