矩阵论笔记(三)

线性空间的基与维数

设V 是线性空间,若存在一组线性无关的向量 α 1 α_1 α1 α 2 α_2 α2 ,…, α n α_n αn ,使空间任一向量可由它们线性表示,则称向量组{ α 1 α_1 α1 α 2 α_2 α2 ,…, α n α_n αn }为 V 的一组基.基所含向量个数为 V 的维数,记为 dim V =n,n<+∞或者 n=+∞.

注:由于基就是向量集合 V 的极大线性无关组,从而线性空间的基也不是惟一的.

例 :向量组{ e 1 e_1 e1=(1 0 0 … 0)T e 2 e_2 e2=(0 1 0 … 0)T,…, e n e_n en=(0 0 1… 0 1)T }是 F n的一组基,所以 dim Fn=n.

重要定理
1.{ E i j E_{ij} Eij,i=1,2,…,m ;j=1,2,…,n}是矩阵空间 R m × n R^{m × n} m×n的一组基,dim R m × n R^{m × n} m×n= m × n
2. n 维线性空间中任意 n 个线性无关的向量构成的向量组都是空间的基.

坐标

α 1 α_1 α1 α 2 α_2 α2 ,…, α n α_n αn 是线性空间 V n V_n Vn(F)的一组基, ∀ \forall β∈V .

在这里插入图片描述
则称数 x 1 x_1 x1 x 2 x_2 x2 ,…, x n x_n xn是 β在基{ α 1 α_1 α1 α 2 α_2 α2 ,…, α n α_n αn}下的坐标,上图式中向量( x 1 x_1 x1 x 2 x_2 x2 ,…, x n x_n xn)Tβ的坐标向量,也简称为坐标

在这里插入图片描述
重要定理:
1.设{ α 1 α_1 α1 α 2 α_2 α2 ,…, α n α_n αn}是 n 维线性空间 V n V_n Vn(F)的一组基, V n V_n Vn(F)中向量 β i β_i βi 在该基下坐标为 X i X _i Xi,i=1,2,3,…,m ,则 V n V_n Vn(F)中向量组{ β 1 β_1 β1 β 2 β_2 β2 ,…, β m β_m βm线性相关的充分必要条件是其坐标向量组{ X 1 X _1 X1 X 2 X _2 X2 ,…, X m X _m Xm }是 F n F _n Fn中的线性相关组
2.在线性空间 V n V_n Vn(F)中取定一组基{ α 1 α_1 α1 α 2 α_2 α2 ,…, α n α_n αn}, ∀ \forall β∈ V n V_n Vn(F),取坐标作为对应关系,β惟一地对应于 F n F _n Fn中一个向量 X (β的坐标).
在这里插入图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值