矩阵论(一)——建立基本概念

1. 线性空间

概念

非空集合V,数域F,对加法和数乘封闭,即 ∀ α ,   β ∈ V \forall \alpha,\ \beta \in V α, βV,有 α + β ∈ V \alpha+\beta \in V α+βV ∀ k ∈ F , α ∈ V \forall k \in F,\alpha \in V kFαV,有 k α ∈ V k\alpha \in V kαV,并且满足下面八条运算法则:
1. 加法交换律: α + β = β + α \alpha + \beta = \beta + \alpha α+β=β+α
2. 加法结合律: ( α + β ) + γ = α + ( β + γ ) (\alpha + \beta) + \gamma = \alpha + (\beta + \gamma) (α+β)+γ=α+(β+γ)
3. V中存在零元: ∃ α 0 ∈ V ,   ∀ α ∈ V ,   α + α 0 = α ,   记 α 0 = 0 \exist \alpha_0 \in V,\ \forall \alpha \in V,\ \alpha + \alpha_0 = \alpha,\ 记\alpha_0 = 0 α0V, αV, α+α0=α, α0=0
4. V中存在负元: ∀ α ∈ V ,   ∃ β ∈ V ,   使 α + β = 0 ,   记 β = − α \forall \alpha \in V,\ \exist \beta \in V,\ 使\alpha + \beta = 0,\ 记\beta = -\alpha αV, βV, 使α+β=0, β=α
5. ∃ 1 ∈ F \exist 1 \in F 1F 1 ⋅ α = α 1 \cdot \alpha = \alpha 1α=α
6. 数乘结合律: ( k l ) α = k ( l α ) (kl) \alpha = k(l \alpha) (kl)α=k(lα)
7. 分配律: k ( α + β ) = k α + k β k(\alpha + \beta) = k \alpha + k \beta k(α+β)=kα+kβ
8. 分配率: ( k + l ) α = k α + l α (k + l) \alpha = k \alpha + l \alpha (k+l)α=kα+lα
此时V是数域F上的线性空间。V中元素称为向量。F为实(复)数域时,称V为实(复)线性空间

性质

  1. V中零元素唯一
  2. V中任一元素的负元素唯一
  3. 设0为数0, 0 ⃗ \vec{0} 0 为V中零向量,则
    (a) 0 ⋅ α = 0 ⃗ 0 \cdot \alpha = \vec{0} 0α=0
    (b) k ⋅ 0 ⃗ = 0 ⃗ ,   k ∈ F k \cdot \vec{0} = \vec{0},\ k \in F k0 =0 , kF
    (c) 若 k ⋅ α = 0 ⃗ k \cdot \alpha = \vec{0} kα=0 ,则一定有 k = 0 k=0 k=0或者 α = 0 ⃗ \alpha = \vec{0} α=0
    (d) ( − 1 ) α = − α (-1) \alpha = - \alpha (1)α=α

2. 基与维数

概念

基: 线性空间V中,若存在一组线性无关的向量 α 1 ,   α 2 ,   . . . ,   α n \alpha_1,\ \alpha_2,\ ...,\ \alpha_n α1, α2, ..., αn,使得V中任一向量都可以由它们表示,则称向量组 { α 1 ,   α 2 ,   . . . ,   α n } \{\alpha_1,\ \alpha_2,\ ...,\ \alpha_n\} {α1, α2, ..., αn}是V的一组基。
维数: 基中所含向量个数,记为 d i m V = n dimV = n dimV=n
基就是向量集合V中的极大线性无关组,因此线性空间的基不唯一
标准正交基: 内积空间 [ V n ( F ) ;   ( α ,   β ) ] [V_n(F);\ (\alpha,\ \beta)] [Vn(F); (α, β)]中,基 { ϵ 1 ,   ϵ 2 ,   ⋯   ,   ϵ m } \{\epsilon_1,\ \epsilon_2,\ \cdots,\ \epsilon_m\} {ϵ1, ϵ2, , ϵm}满足
( ϵ i ,   ϵ j ) = { 1 i = j 0 i ≠ j (\epsilon_i,\ \epsilon_j) = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases} (ϵi, ϵj)={10i=ji=j

性质

{ E i j ,   i = 1 ,   2 ,   . . . ,   m ;   j = 1 ,   2 ,   . . . ,   n } \{E_{ij},\ i=1,\ 2,\ ...,\ m;\ j=1,\ 2,\ ...,\ n \} {Eij, i=1, 2, ..., m; j=1, 2, ..., n}是矩阵空间 R m ∗ n R^{m*n} Rmn的一组基,则
d i m   R m ∗ n = m ∗ n dim\ R^{m*n} = m * n dim Rmn=mn

3. 坐标

概念

α 1 ,   α 2 ,   ⋯   ,   α n \alpha_1,\ \alpha_2,\ \cdots,\ \alpha_n α1, α2, , αn是线性空间 V n ( F ) V_n(F) Vn(F)的一组基, ∀ β ∈ V \forall \beta \in V βV,有
β = ∑ i = 1 n x i α i = ( α 1    α 2    ⋯    α n ) [ x 1 x 2 ⋮ x n ] \beta = \sum^n_{i = 1}x_i \alpha_i=(\alpha_1\ \ \alpha_2\ \ \cdots \ \ \alpha_n) \left[ \begin{matrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{matrix} \right] β=i=1nxiαi=(α1  α2    αn)x1x2xn
则称数 x 1 ,   x 2 ,   ⋯   ,   x n x_1,\ x_2,\ \cdots,\ x_n x1, x2, , xn β \beta β在基 { α 1 ,   α 2 ,   ⋯   ,   α n } \{\alpha_1,\ \alpha_2,\ \cdots,\ \alpha_n\} {α1, α2, , αn}下的坐标,向量 { x 1 ,   x 2 ,   ⋯   ,   x n } T \{x_1,\ x_2,\ \cdots,\ x_n\}^T {x1, x2, , xn}T β \beta β的坐标,简称坐标

例题

在这里插入图片描述

4. 同构

概念

若线性空间 V n ( F ) V_n(F) Vn(F) F n F^n Fn存在一一对应关系 σ \sigma σ,若 σ \sigma σ满足
σ ( α + β ) = σ ( α ) + σ ( β ) \sigma(\alpha + \beta) = \sigma(\alpha) + \sigma(\beta) σ(α+β)=σ(α)+σ(β)

σ ( k α ) = k σ ( α ) \sigma(k \alpha) = k \sigma(\alpha) σ(kα)=kσ(α)
则数域F上任何一个n维线性空间 V n ( F ) V_n(F) Vn(F)都和n维线性空间 F n F^n Fn同构

性质

{ α 1 ,   α 2 ,   ⋯   ,   α n } \{\alpha_1,\ \alpha_2,\ \cdots,\ \alpha_n\} {α1, α2, , αn}是n维线性空间 V n ( F ) V_n(F) Vn(F)的一组基, V n ( F ) V_n(F) Vn(F)中向量 β i \beta_i βi在该基下的坐标为 X i ,   i = 1 ,   2 ,    ⋯   ,   m X_i,\ i=1,\ 2,\ \ \cdots,\ m Xi, i=1, 2,  , m,则 V n ( F ) V_n(F) Vn(F)中向量组 { β 1 ,   β 2 ,   ⋯   ,   β n } \{\beta_1,\ \beta_2,\ \cdots,\ \beta_n\} {β1, β2, , βn}线性相关的充要条件是其坐标向量组 { X 1 ,   X 2 ,   ⋯   ,   X m } \{X_1,\ X_2,\ \cdots,\ X_m\} {X1, X2, , Xm} F n F^n Fn中的线性相关组。

例题

在这里插入图片描述

5. 过渡矩阵(基变换矩阵)

概念

{ α 1 ,   α 2 ,   ⋯   ,   α n } \{\alpha_1,\ \alpha_2,\ \cdots,\ \alpha_n\} {α1, α2, , αn} { β 1 ,   β 2 ,   ⋯   ,   β n } \{\beta_1,\ \beta_2,\ \cdots,\ \beta_n\} {β1, β2, , βn}是n维线性空间 V n ( F ) V_n(F) Vn(F)的两组基,若有矩阵 C ∈ F n ∗ n C \in F^{n * n} CFnn,使
( β 1 β 2 ⋯ β n ) = ( α 1 α 2 ⋯ α n ) C (\beta_1 \quad \beta_2 \quad \cdots \quad \beta_n) = (\alpha_1 \quad \alpha_2 \quad \cdots \quad \alpha_n)C (β1β2βn)=(α1α2αn)C则称C是从基 { α 1 ,   α 2 ,   ⋯   ,   α n } \{\alpha_1,\ \alpha_2,\ \cdots,\ \alpha_n\} {α1, α2, , αn}到基 { β 1 ,   β 2 ,   ⋯   ,   β n } \{\beta_1,\ \beta_2,\ \cdots,\ \beta_n\} {β1, β2, , βn}过渡矩阵(基变换矩阵)

性质

设向量 α ∈ V n ( F ) \alpha \in V_n(F) αVn(F) α \alpha α在两组基下的坐标分别为X和Y,则有
α = ( α 1 α 2 ⋯ α n ) X \alpha = (\alpha_1 \quad \alpha_2 \quad \cdots \quad \alpha_n)X α=(α1α2αn)X

α = ( β 1 β 2 ⋯ β n ) Y \alpha = (\beta_1 \quad \beta_2 \quad \cdots \quad \beta_n)Y α=(β1β2βn)Y

因此 α = ( β 1 β 2 ⋯ β n ) Y = ( α 1 α 2 ⋯ α n ) C Y \alpha = (\beta_1 \quad \beta_2 \quad \cdots \quad \beta_n)Y = (\alpha_1 \quad \alpha_2 \quad \cdots \quad \alpha_n)CY α=(β1β2βn)Y=(α1α2αn)CY,有 X = C Y X=CY X=CY

例题

例题一
在这里插入图片描述在这里插入图片描述
例题二
在这里插入图片描述在这里插入图片描述

6. 子空间

子空间数学表示:
∃ W ⊂ V 且 W ≠ ∅ \exist W \subset V且W \neq \emptyset WVW=,同时满足
∀ α ,   β ∈ W , 有 α + β ∈ W \forall \alpha,\ \beta \in W,有\alpha+\beta \in W α, βWα+βW

∀ k ∈ F , α ∈ W , 有 k α ∈ W \forall k \in F,\alpha \in W,有k\alpha \in W kFαWkαW
则称W是V的子空间
任何线性空间都有两个平凡子空间:一个是它自身 V ⊂ V V \subset V VV,另一个是 W = { 0 } W=\{0\} W={0}(零元素空间)

6.1 生成子空间

V n ( F ) V_n(F) Vn(F)是线性空间, α 1 ,   α 2 ,   ⋯   ,   α m \alpha_1,\ \alpha_2,\ \cdots,\ \alpha_m α1, α2, , αm是V中一组向量,则由它们一切线性组合构成的集合: L { α 1 ,   α 2 ,   ⋯   ,   α m } = { α ∣ α = ∑ i = 1 m k i α i ,   k i ∈ F } L\{\alpha_1,\ \alpha_2,\ \cdots,\ \alpha_m\} = \{\alpha | \alpha = \sum^{m}_{i=1}k_i \alpha_i,\ k_i \in F\} L{α1, α2, , αm}={αα=i=1mkiαi, kiF}是V的一个子空间,称为由 α 1 ,   α 2 ,   ⋯   ,   α m \alpha_1,\ \alpha_2,\ \cdots,\ \alpha_m α1, α2, , αm生成的子空间。
L和span等价

6.2 直和(补)子空间

概念

直和子空间: W = W 1 ⨁ W 2 W = W_1 \bigoplus W_2 W=W1W2
需要同时满足
W = W 1 + W 2 W = W_1 + W_2 W=W1+W2
W 1 ∩ W 2 = { 0 } W_1 \cap W_2 = \{0\} W1W2={0}
W 1 W_1 W1 W 2 W_2 W2是V的子空间

直和补子空间: V = W ⨁ U V = W \bigoplus U V=WU,此时称U是W的直和补子空间
对n维空间V中任何子空间W,设 α 1 ,   α 2 ,   ⋯   ,   α r \alpha_1,\ \alpha_2,\ \cdots,\ \alpha_r α1, α2, , αr为W的基,r<n,把它们扩充到V的基
{ α 1 ,   α 2 ,   ⋯   ,   α r ,   β r + 1 ,   ⋯   ,   β n } \{\alpha_1,\ \alpha_2,\ \cdots,\ \alpha_r,\ \beta_{r+1},\ \cdots,\ \beta_n\} {α1, α2, , αr, βr+1, , βn}

U = L { β r + 1 ,   ⋯   ,   β n } \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad U=L\{\beta_{r+1},\ \cdots,\ \beta_n\} U=L{βr+1, , βn}
则成立 V = W ⨁ U V = W \bigoplus U V=WU,此时称U是W的直和补子空间
V n ( F ) 的 基 为 : { α 1 ,   α 2 ,   ⋯   ,   α n } V_n(F)的基为:\{\alpha_1,\ \alpha_2,\ \cdots,\ \alpha_n\} Vn(F){α1, α2, , αn},则
V = L { α 1 ,   α 2 ,   ⋯   ,   α n } = L { α 1 } ⨁ L { α 2 } ⨁ ⋯ ⨁ L { α n } V=L\{\alpha_1,\ \alpha_2,\ \cdots,\ \alpha_n\}=L\{\alpha_1\} \bigoplus L\{\alpha_2\} \bigoplus \cdots \bigoplus L\{\alpha_n\} V=L{α1, α2, , αn}=L{α1}L{α2}L{αn}

性质

W 1 W_1 W1 W 2 W_2 W2是V的子空间, W = W 1 + W 2 W = W_1 + W_2 W=W1+W2,则以下条件等价:

  1. W = W 1 ⨁ W 2 W = W_1 \bigoplus W_2 W=W1W2
  2. ∀ X ∈ W , X 表 示 式 唯 一 : X = X 1 + X 2 , 其 中 X 1 ∈ W 1 , X 2 ∈ W 2 \forall X \in W,X表示式唯一:X = X_1 + X_2,其中X_1 \in W_1,X_2 \in W_2 XWXX=X1+X2X1W1X2W2
  3. W中零向量表达式唯一,即只要 0 = X 1 + X 2 , X 1 ∈ W 1 , X 2 ∈ W 2 0 = X_1 + X_2,X_1 \in W_1,X_2 \in W_2 0=X1+X2X1W1X2W2,就有 X 1 = 0 , X 2 = 0 X_1 = 0,X_2 = 0 X1=0X2=0
  4. d i m W = d i m W 1 + d i m W 2 dimW = dimW_1 + dimW_2 dimW=dimW1+dimW2

6.3 正交(补)子空间

正交子空间: U ⊥ = { α ∣ α ∈ V ,   ∀ β ∈ U ,   ( α ,   β ) = 0 } U^\perp = \{\alpha | \alpha \in V,\ \forall \beta \in U,\ (\alpha,\ \beta) = 0\} U={ααV, βU, (α, β)=0}
正交补子空间: V n = U + U ⊥ V_n = U + U^ \perp Vn=U+U U ⊥ U^ \perp U U U U的正交补子空间

6.4 不变子空间

线性变换T,W是子空间,若 ∀ α ∈ W ,   有 T ( α ) ∈ W \forall \alpha \in W,\ 有T(\alpha) \in W αW, T(α)W,即值域 T ( W ) ⊂ W T(W) \subset W T(W)W,则称W是T的不变子空间

6.5 零空间(解空间)与列空间(值域)

零空间N(A): N ( A ) = { X ∣ A X = 0 } ⊂ F n N(A) = \{X | AX = 0\} \subset F^n \quad N(A)={XAX=0}Fn 等价于求方程组的非零解
列空间R(A): R ( A ) = L { α 1 ,   α 2 ,   ⋯   ,   α n } = { y = A x ∣ x = ( x 1 ,   x 2 ,   ⋯   ,   x n ) T ∈ F n } = { x 1 α 1 + x 2 α 2 + ⋯ + x n α n ∣ x i ∈ F } ⊂ F m R(A) = L\{\alpha_1,\ \alpha_2,\ \cdots,\ \alpha_n\} = \{y=Ax | x = (x_1,\ x_2,\ \cdots,\ x_n) ^ T \in F^n\} = \{x_1 \alpha_1 + x_2 \alpha_2 + \cdots + x_n \alpha_n | x_i \in F\} \subset F^m \quad R(A)=L{α1, α2, , αn}={y=Axx=(x1, x2, , xn)TFn}={x1α1+x2α2++xnαnxiF}Fm 等价于求方程组的极大线性无关组
当T是线性空间 V n ( F ) V_n(F) Vn(F)上的线性变换,则:
像空间: R ( T ) = { β ∣ ∃ α ∈ V n ( F ) ,   β = T ( α ) } R(T) = \{\beta | \exist \alpha \in V_n(F),\ \beta = T(\alpha) \} R(T)={βαVn(F), β=T(α)} V n ( F ) V_n(F) Vn(F)的子空间,称为T的像空间 \quad 等价于求 T ( α ) T(\alpha) T(α)组成的结果集合
零空间: N ( T ) = { α ∣ T ( α ) = 0 } N(T) = \{\alpha | T(\alpha) = 0 \} N(T)={αT(α)=0} V n ( F ) V_n(F) Vn(F)的子空间,称为T的零空间 \quad 等价于求 T ( α ) = 0 时 α 的 解 T(\alpha) = 0时\alpha的解 T(α)=0α
{ α 1 ,   α 2 ,   ⋯   ,   α n } \{\alpha_1,\ \alpha_2,\ \cdots,\ \alpha_n\} {α1, α2, , αn}为V的基,则 R ( T ) = L { T ( α 1 ) ,   T ( α 2 ) ,   ⋯   ,   T ( α n ) } R(T) = L\{T(\alpha_1),\ T(\alpha_2),\ \cdots,\ T(\alpha_n)\} R(T)=L{T(α1), T(α2), , T(αn)}

6.6 交空间与和空间

概念

交空间: W 1 ∩ W 2 = { α ∣ α ∈ W 1 且 α ∈ W 2 } W_1 \cap W_2 = \{\alpha | \alpha \in W_1且\alpha \in W_2\} W1W2={ααW1αW2}
和空间: W 1 + W 2 = { α ∣ α = α 1 + α 2 ,   α 1 ∈ W 1 ,   α 2 ∈ W 2 } W_1 + W_2 = \{\alpha | \alpha = \alpha_1 + \alpha_2,\ \alpha_1 \in W_1,\ \alpha_2 \in W_2\} W1+W2={αα=α1+α2, α1W1, α2W2}

性质

d i m W 1 + d i m W 2 = d i m ( W 1 + W 2 ) + d i m ( W 1 ∩ W 2 ) dimW_1 + dimW_2 = dim(W_1 + W_2) + dim(W_1 \cap W_2) dimW1+dimW2=dim(W1+W2)+dim(W1W2) 其中 W 1 W_1 W1 W 2 W_2 W2是线性空间V的子空间

7. 欧氏空间和酉空间

V n ( F ) → F : V n ( F ) → F V_n(F) \rightarrow F: V_n(F) \rightarrow F Vn(F)F:Vn(F)F 同时满足
a. 对称性: ( α ,   β ) = ( β ,   α ‾ ) (\alpha,\ \beta) = (\overline{\beta,\ \alpha}) (α, β)=(β, α) ( β ,   α ‾ ) (\overline{\beta,\ \alpha}) (β, α)表示 ( β ,   α ) (\beta,\ \alpha) (β, α)的共轭
b. 线性性: ( k α ,   β ) = k ( α ,   β ) (k \alpha,\ \beta) = k(\alpha,\ \beta) (kα, β)=k(α, β)
( α 1 + α 2 ,   β ) = ( α 1 ,   β ) + ( α 2 ,   β ) \qquad \qquad (\alpha_1 + \alpha_2,\ \beta) = (\alpha_1,\ \beta) + (\alpha_2,\ \beta) (α1+α2, β)=(α1, β)+(α2, β)
c. 正定性: ( α ,   α ) ≥ 0 ,   ( α ,   α ) = 0 (\alpha,\ \alpha) \geq 0,\ (\alpha,\ \alpha)=0 (α, α)0, (α, α)=0的充要条件是 α = 0 \alpha = 0 α=0
则称 ( α ,   β ) (\alpha,\ \beta) (α, β) V n ( F ) V_n(F) Vn(F)的一个内积 [ V n ( F ) ;   ( α ,   β ) ] [V_n(F);\ (\alpha,\ \beta)] [Vn(F); (α, β)]内积空间

欧式空间: 实数域R上的内积空间
酉空间: 复数域C上的内积空间
共轭: 实部相同,虚部取相反数
转置共轭矩阵: A H = ( A ‾ ) T A^H = (\overline{A})^T AH=(A)T
向量夹角: θ = a r c c o s ( α ,   β ) ∣ ∣ α ∣ ∣   ∣ ∣ β ∣ ∣ \theta = arccos \frac{(\alpha,\ \beta)}{||\alpha|| \ ||\beta||} θ=arccosα β(α, β)
向量正交: ( α ,   β ) = 0 (\alpha,\ \beta) = 0 (α, β)=0
标准正交向量组: 向量组 { α 1 ,   α 2 ,   ⋯   ,   α m } \{\alpha_1,\ \alpha_2,\ \cdots,\ \alpha_m\} {α1, α2, , αm}满足
( α i ,   α j ) = { 1 i = j 0 i ≠ j (\alpha_i,\ \alpha_j) = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases} (αi, αj)={10i=ji=j
Gram-Schmidt正交化(求正交向量组):
β k = α k − ∑ i = 1 k − 1 ( α k ,   β i ) ( β i ,   β i ) β i , k = 1 ,   2 ,   ⋯   ,   m \beta_k = \alpha_k - \sum^{k - 1}_{i = 1} \frac{(\alpha_k,\ \beta_i)}{(\beta_i,\ \beta_i)} \beta_i,\quad k = 1,\ 2,\ \cdots,\ m βk=αki=1k1(βi, βi)(αk, βi)βi,k=1, 2, , m

其中由 α i {\alpha_i} αi组成的向量组为线性无关向量组,由 β k \beta_k βk组成的向量组就是正交向量组

8. 欧几里得范数

概念

向量的长度也叫做向量的欧几里得范数,即
∣ ∣ α ∣ ∣ = ( α ,   α ) ||\alpha|| = \sqrt{(\alpha,\ \alpha)} α=(α, α)
单位向量: ∣ ∣ α ∣ ∣ = 1 ||\alpha|| = 1 α=1

性质

∣ ∣ k α ∣ ∣ = ∣ ∣ k ∣ ∣ ⋅ ∣ ∣ α ∣ ∣ ||k \alpha|| = ||k|| \cdot ||\alpha|| kα=kα

∣ ∣ α + β ∣ ∣ ≤ ∣ ∣ α ∣ ∣ + ∣ ∣ β ∣ ∣ ||\alpha + \beta|| \leq ||\alpha|| + ||\beta|| α+βα+β

∀ α ≠ 0 ,   α 0 = α ∣ ∣ α ∣ ∣ ,   ∣ ∣ α 0 ∣ ∣ = 1 ,   取 α 0 = α ∣ ∣ α ∣ ∣ 的 过 程 称 为 标 准 化 \forall \alpha \neq 0,\ \alpha^0 = \frac{\alpha}{||\alpha||},\ ||\alpha^0|| = 1,\ 取\alpha^0 = \frac{\alpha}{||\alpha||}的过程称为标准化 α=0, α0=αα, α0=1, α0=αα

9. 柯西不等式

α 和 β 线 性 相 关 \alpha和\beta线性相关 αβ线

   ⟺    \iff

[ V n ( F ) ;   ( α ,   β ) ] 为 内 积 空 间 , ∀ α ,   β ∈ V n ( F ) , 有 ∣ ( α ,   β ) ∣ 2 ≤ ( α ,   α ) ( β ,   β ) [V_n(F);\ (\alpha,\ \beta)]为内积空间,\forall \alpha, \ \beta \in V_n(F),有|(\alpha,\ \beta)|^2 \leq (\alpha,\ \alpha) (\beta,\ \beta) [Vn(F); (α, β)]α, βVn(F)(α, β)2(α, α)(β, β)
在这里插入图片描述
在这里插入图片描述

例题

C n ,   ( α ,   β ) = β H α ⇒ ∣ ∑ i = 1 N x i y i ‾ ∣ 2 ≤ ∑ i = 1 n ∣ x i ∣ 2 ⋅ ∑ i = 1 n ∣ y i ∣ 2 C^n,\ (\alpha,\ \beta) = \beta^H \alpha \Rightarrow |\sum^{N}_{i = 1} x_i \overline{y_i}|^2 \leq \sum^{n}_{i=1} |x_i|^2 \cdot \sum^{n}_{i=1} |y_i|^2 Cn, (α, β)=βHαi=1Nxiyi2i=1nxi2i=1nyi2

C n ∗ n ,   ( A ,   B ) = t r ( B H A ) ⇒ ∣ t r ( B H A ) 2 ∣ ≤ t r ( A H A ) ⋅ t r ( B H B ) C^{n * n},\ (A,\ B) = tr(B^HA) \Rightarrow |tr(B^H A)^2| \leq tr(A^H A) \cdot tr(B^H B) Cnn, (A, B)=tr(BHA)tr(BHA)2tr(AHA)tr(BHB)

柯西不等式可写为 ∣ α ,   β ∣ ≤ ∣ ∣ α ∣ ∣ ⋅ ∣ ∣ β ∣ ∣ |\alpha,\ \beta| \leq ||\alpha|| \cdot ||\beta|| α, βαβ

10. 线性变换

概念

变换: 线性空间 V n ( F ) V_n(F) Vn(F)有对应关系T,使 ∀ α ∈ V n ( F ) \forall \alpha \in V_n(F) αVn(F),都有确定的向量 α ′ = T ( α ) ∈ V n ( F ) \alpha' = T(\alpha) \in V_n(F) α=T(α)Vn(F)
线性变换: 变换T同时满足
∀ α ,   β ∈ V n ( F ) , T ( α + β ) = T ( α ) + T ( β ) \forall \alpha,\ \beta \in V_n(F), \quad T(\alpha + \beta) = T(\alpha) + T(\beta) α, βVn(F),T(α+β)=T(α)+T(β)

∀ k ∈ F ,   ∀ α ∈ V n ( F ) , T ( k α ) = k T ( α ) \forall k \in F,\ \forall \alpha \in V_n(F), \quad T(k \alpha) = k T(\alpha) kF, αVn(F),T(kα)=kT(α)

可将上述两式合写为 T ( k 1 α 1 + k 2 α 2 ) = k 1 T ( α 1 ) + k 2 T ( α 2 ) T(k_1 \alpha_1 + k_2 \alpha_2) = k_1 T(\alpha_1) + k_2 T(\alpha_2) T(k1α1+k2α2)=k1T(α1)+k2T(α2)
线性变换与同构:
两者都保持加法和数乘运算不变
但同构要求为一一映射关系,而线性变换不需要满足

零变换: ∀ α ∈ V n ( F ) ,   T ( α ) = 0 \forall \alpha \in V_n(F),\ T(\alpha) = 0 αVn(F), T(α)=0
恒等变换: ∀ α ∈ V n ( F ) ,   T ( α ) = α \forall \alpha \in V_n(F),\ T(\alpha) = \alpha αVn(F), T(α)=α
矩阵: T是 V n ( F ) V_n(F) Vn(F)的线性变换, { α 1 ,   α 2 ,   ⋯   , α n } \{\alpha_1,\ \alpha_2,\ \cdots, \alpha_n\} {α1, α2, ,αn}是基,若 ∃ A ∈ F n ∗ n \exist A \in F^{n * n} AFnn,使 T ( α 1 ,   α 2 ,   ⋯   , α n ) = ( α 1 ,   α 2 ,   ⋯   , α n ) A T(\alpha_1,\ \alpha_2,\ \cdots, \alpha_n) = (\alpha_1,\ \alpha_2,\ \cdots, \alpha_n) A T(α1, α2, ,αn)=(α1, α2, ,αn)A 则称A为T在基 { α 1 ,   α 2 ,   ⋯   , α n } \{\alpha_1,\ \alpha_2,\ \cdots, \alpha_n\} {α1, α2, ,αn}下的矩阵

性质

T ( 0 ) = 0 T(0) = 0 T(0)=0

T ( − α ) = − T ( α ) T(- \alpha) = - T(\alpha) T(α)=T(α)

T ∑ i = 1 r k i α i = ∑ i = 1 r k i T ( α i ) T \sum^r_{i = 1} k_i \alpha_i = \sum^r_{i = 1} k_i T(\alpha_i) Ti=1rkiαi=i=1rkiT(αi)

{ α 1 , α 2 , ⋯   , α s } \{\alpha_1,\quad \alpha_2,\quad \cdots,\quad \alpha_s \} {α1,α2,,αs}线性相关,则 { T ( α 1 ) , T ( α 2 ) , ⋯   , T ( α s ) } \{T(\alpha_1),\quad T(\alpha_2),\quad \cdots,\quad T(\alpha_s) \} {T(α1),T(α2),,T(αs)}也线性相关

在这里插入图片描述
T 1 和 T 2 T_1和T_2 T1T2是两个线性变换,在基 { α 1 ,   α 2 ,   ⋯   , α n } \{\alpha_1,\ \alpha_2,\ \cdots, \alpha_n\} {α1, α2, ,αn}下的矩阵分别为 A 1 和 A 2 A_1和A_2 A1A2,则在基 { α 1 ,   α 2 ,   ⋯   , α n } \{\alpha_1,\ \alpha_2,\ \cdots, \alpha_n\} {α1, α2, ,αn}下:

  1. T 1 + T 2 T_1 + T_2 T1+T2的矩阵为 ( A 1 + A 2 ) (A_1 + A_2) (A1+A2)

  2. T 1 T 2 T_1 T_2 T1T2的矩阵为 A 1 A 2 A_1 A_2 A1A2

  3. k T 1 k T_1 kT1的矩阵为 k A 1 k A_1 kA1

  4. T 1 T_1 T1可逆    ⟺    \iff A 1 A_1 A1可逆。 T 1 − 1 T^{-1}_1 T11的矩阵为 A 1 − 1 A^{-1}_1 A11

{ α 1 ,   α 2 ,   ⋯   ,   α n } \{\alpha_1,\ \alpha_2,\ \cdots,\ \alpha_n\} {α1, α2, , αn}到基 { β 1 ,   β 2 ,   ⋯   ,   β n } \{\beta_1,\ \beta_2,\ \cdots,\ \beta_n\} {β1, β2, , βn}的过渡矩阵为C,线性变换T在两组基下的矩阵分别A和B,则 B = C − 1 A C B = C^{-1} A C B=C1AC

例题

例题一
在这里插入图片描述
例题二
在这里插入图片描述

11. 正交(酉)变换

概念

内积空间上的正交变换: ∀ α ,   β ∈ [ V n ( F ) ;   ( α ,   β ) ] \forall \alpha,\ \beta \in [V_n(F);\ (\alpha,\ \beta)] α, β[Vn(F); (α, β)]都有 ( T ( α ) ,   T ( β ) ) = ( α ,   β ) (T(\alpha),\ T(\beta)) = (\alpha,\ \beta) (T(α), T(β))=(α, β)
正交变换: 当内积空间为欧式空间时,变换T为正交变换
酉变换: 当内积空间为酉空间时,变换T为酉变换

性质

T是内积空间上的线性变换,则下列命题等价:

  1. T是正交(酉)变换
  2. T保持向量长度不变
  3. T把空间 V n ( F ) V_n(F) Vn(F)的标准正交基变换为标准正交基
  4. 正交变换关于任一标准正交基的矩阵C满足 C T C = C C T = I C^T C = C C^T = I CTC=CCT=I;酉变换关于任一标准正交基的矩阵U满足 U H U = U U H = I U^H U = U U^H = I UHU=UUH=I

正交矩阵 ( C ) (C) (C)的行列式为 ± 1 \pm1 ±1;酉矩阵 ( U ) (U) (U)的行列式模长为1
C − 1 = C T ;   U − 1 = U H C^{-1} = C^T;\ U^{-1} = U^H C1=CT; U1=UH
正交(酉)矩阵的逆矩阵与乘积仍然是正交(酉)矩阵
n阶正交(酉)矩阵的列和行向量组是欧氏(酉)空间 R n ( C n ) R^n(C^n) Rn(Cn)中的标准正交基

例题

例题一
在这里插入图片描述
本博客中所有内容均来自《矩阵论》第二版 华科,加入了一些自己的理解和简化,如有侵权,请联系删除

  • 10
    点赞
  • 37
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值