矩阵分析与应用-1.6-矩阵的标量函数

前言

本文学习过程来源是《矩阵分析与应用-张贤达》一书. 可以通过 z-lib 下载.

这部分内容与线性代数的内容重合, 讲述的是矩阵的一些标量函数.

一、矩阵的二次型

任意一个方阵 A A A 的二次型 x H A x x^{\mathrm{H}}Ax xHAx 是一个实数标量. 以实矩阵为例, 有以下推导.

x T A x = [ x 1 , x 2 , x 3 ] [ 1 4 2 − 1 7 5 − 1 6 3 ] [ x 1 x 2 x 3 ] = x 1 2 − x 2 x 1 − x 3 x 1 + 4 x 1 x 2 + 7 x 2 2 + 6 x 3 x 2 + 2 x 1 x 3 + 5 x 2 x 3 + 3 x 3 2 = x 1 2 + 7 x 2 2 + 3 x 3 2 + 3 x 1 x 2 + x 1 x 3 + 11 x 2 x 3 \begin{aligned} x^{\mathrm{T}}Ax &= [x_1,x_2,x_3] \begin{bmatrix} 1 & 4 & 2\\ -1 & 7 & 5\\ -1 & 6 & 3 \end{bmatrix} \begin{bmatrix} x_1\\ x_2\\ x_3 \end{bmatrix}\\ &= x_1^2 - x_2x_1 - x_3x_1 + 4x_1x_2 + 7x_2^2 + 6x_3x_2 + 2x_1x_3 + 5x_2x_3 + 3x_3^2 \\ &= x_1^2 + 7x_2^2 + 3x_3^2 + 3x_1x_2 + x_1x_3 + 11x_2x_3 \end{aligned} xTAx=[x1,x2,x3]111476253x1x2x3=x12x2x1x3x1+4x1x2+7x22+6x3x2+2x1x3+5x2x3+3x32=x12+7x22+3x32+3x1x2+x1x3+11x2x3

这就是变量 x x x 的二次型函数, 仔细观察可以看见对角线是二次项, 一次项是关于对角线对称元素之和. 所以我们就把 x T A x x^{\mathrm{T}}Ax xTAx 称为矩阵 A A A 的二次型.

推而广之, 若 x = [ x 1 , x 2 , … , x n ] T x = [x_1,x_2,\dots,x_n]^{\mathrm{T}} x=[x1,x2,,xn]T, 且 n × n n \times n n×n 矩阵 A A A 的元素为 a i j a_{ij} aij, 则二次型为.

x T A x = ∑ i = 1 n ∑ j = 1 n x i x j a i j = ∑ i = 1 n a i i x i 2 + ∑ i = 1 , i ≠ j n ∑ j = 1 n a i j x i x j = ∑ i = 1 n a i i x i 2 + ∑ i = 1 n − 1 ∑ j = i + 1 n ( a i j + a j i ) x i x j (1) \begin{aligned} x^{\mathrm{T}}Ax &= \sum_{i=1}^{n}\sum_{j=1}^{n}x_ix_ja_{ij} \\ &= \sum_{i=1}^{n}a_{ii}x_i^2 + \sum_{i=1,i \neq j}^{n}\sum_{j=1}^{n}a_{ij}x_ix_j \\ &= \sum_{i=1}^{n}a_{ii}x_i^2 + \sum_{i=1}^{n-1}\sum_{j=i+1}^{n}(a_{ij}+a_{ji})x_ix_j \end{aligned} \tag{1} xTAx=i=1nj=1nxixjaij=i=1naiixi2+i=1,i=jnj=1naijxixj=i=1naiixi2+i=1n1j=i+1n(aij+aji)xixj(1)

其实只要满足方阵对角线相等, 关于对角线元素之和相等, 这两个方阵二次型就相等.

也就是对于任意一个二次型函数

f ( x 1 , x 2 , … , x n ) = ∑ i = 1 n a i i x i 2 + ∑ i = 1 , i ≠ j n ∑ j = 1 n a i j x i x j (2) f(x_1,x_2,\dots,x_n) = \sum_{i=1}^{n}a_{ii}x_i^2 + \sum_{i=1, i \neq j}^{n}\sum_{j=1}^{n}a_{ij}x_ix_j \tag{2} f(x1,x2,,xn)=i=1naiixi2+i=1,i=jnj=1naijxixj(2)

存在着许多矩阵 A A A, 它们的二次型相同. 但是只有一个矩阵满足其元素关于主对称轴相等的条件 (对于复数矩阵就要满足共轭的条件), 这个矩阵我们就把它叫做实对称矩阵或复共轭对称 (即 H e r m i t i a n \mathrm{Hermitian} Hermitian 矩阵).

把大于零的二次型 x H A x x^{\mathrm{H}}Ax xHAx 称为正定的二次型, 则与之对应的 H e r m i t i a n \mathrm{Hermitian} Hermitian 矩阵为正定矩阵. 由此又有一些定义.

定义 1: 一个复共轭对称矩阵 A A A

  • 若二次型 x H A x > 0 , ∀ x ≠ 0 x^{\mathrm{H}}Ax > 0, \quad \forall x \neq 0 xHAx>0,x=0, 就叫正定矩阵

  • 若二次型 x H A x ≥ 0 , ∀ x ≠ 0 x^{\mathrm{H}}Ax \ge 0, \quad \forall x \neq 0 xHAx0,x=0, 就叫半正定矩阵

  • 若二次型 x H A x < 0 , ∀ x ≠ 0 x^{\mathrm{H}}Ax < 0, \quad \forall x \neq 0 xHAx<0,x=0, 就叫负定矩阵

  • 若二次型 x H A x ≤ 0 , ∀ x ≠ 0 x^{\mathrm{H}}Ax \le 0, \quad \forall x \neq 0 xHAx0,x=0, 就叫半负定矩阵

  • 若二次型 x H A x x^{\mathrm{H}}Ax xHAx 即可能取正值, 也可能取负值, 就叫不定矩阵

定义 2: 设矩阵 A m × n A_{m \times n} Am×n 的元素为 a i j a_{ij} aij. 若

a i j ≥ 0 , ∀ i = 1 , 2 , … , m , j = 1 , 2 , … , n (3) a_{ij} \ge 0, \quad \forall i = 1,2,\dots,m, j = 1,2,\dots,n \tag{3} aij0,i=1,2,,m,j=1,2,,n(3)

则称 A A A 为非负矩阵. 表示 A A A 中所有元素都是非负的, 同时 A A A 也叫做正矩阵. 与正定矩阵相比, 这个矩阵不一定是方阵.

二、矩阵的迹

定义 3: n × n n \times n n×n 矩阵 A A A 的对角线元素之和称为 A A A 的迹, 记作 t r ( A ) tr(A) tr(A), 即

t r ( A ) = a 11 + a 22 + ⋯ + a n n = ∑ i = 1 n a i i (4) tr(A) = a_{11} + a_{22} + \dots + a_{nn} = \sum_{i=1}^{n}a_{ii} \tag{4} tr(A)=a11+a22++ann=i=1naii(4)

不是方阵就没有迹的定义.

1. 关于迹的等式

  • A A A B B B 均为 n × n n \times n n×n 矩阵, 则 t r ( A ± B ) = t r ( A ) ± t r ( B ) \mathrm{tr}(A \pm B) = \mathrm{tr}(A) \pm \mathrm{tr}(B) tr(A±B)=tr(A)±tr(B)

  • c c c 是一个复或者实的常数, 则 t r ( c A ) = c t r ( A ) \mathrm{tr}(cA) = c\mathrm{tr}(A) tr(cA)=ctr(A)

  • A A A B B B 均为 n × n n \times n n×n 矩阵, 并且 c 1 c_1 c1 c 2 c_2 c2 为常数, 则 t r ( c 1 A ± c 2 B ) = c 1 t r ( A ) ± c 2 t r ( B ) \mathrm{tr}(c_1A \pm c_2B) = c_1\mathrm{tr}(A) \pm c_2\mathrm{tr}(B) tr(c1A±c2B)=c1tr(A)±c2tr(B)

  • 矩阵 A A A 的转置、复数共轭和复共轭的迹分别是

t r ( A T ) = t r ( A ) t r ( A ∗ ) = [ t r ( A ) ] ∗ t r ( A H ) = [ t r ( A ) ] ∗ \mathrm{tr}(A^\mathrm{T}) = \mathrm{tr}(A) \\ \mathrm{tr}(A^*) = [\mathrm{tr}(A)]^* \\ \mathrm{tr}(A^\mathrm{H}) = [\mathrm{tr}(A)]^* tr(AT)=tr(A)tr(A)=[tr(A)]tr(AH)=[tr(A)]

  • 迹是相似不变量, 若 A A A m × n m \times n m×n 矩阵, 且 B B B n × m n \times m n×m 矩阵, 则

t r ( A B ) = B A \mathrm{tr}(AB) = \mathrm{BA} tr(AB)=BA

  • 若矩阵 A A A B B B 均为 m × m m \times m m×m 矩阵, 并且 B B B 非奇异, 则

t r ( B A B − 1 ) = t r ( B − 1 A B ) = t r ( A ) \mathrm{tr}(BAB^{-1}) = \mathrm{tr}(B^{-1}AB) = \mathrm{tr}(A) tr(BAB1)=tr(B1AB)=tr(A)

  • A A A 是一个 m × n m \times n m×n 矩阵, 则 t r ( A H A ) = 0 ⇔ A = O m × n ( 零 矩 阵 ) \mathrm{tr}(A^{\mathrm{H}}A) = 0 \Leftrightarrow A = O_{m \times n}(零矩阵) tr(AHA)=0A=Om×n()

  • x H A x = t r ( A x x H ) x^\mathrm{H}Ax = \mathrm{tr}(Axx^{\mathrm{H}}) xHAx=tr(AxxH) y H x = t r ( x y H ) y^{\mathrm{H}}x = \mathrm{tr}(xy^{\mathrm{H}}) yHx=tr(xyH)

  • 分块矩阵的迹满足
    t r [ A B C D ] = t r ( A ) + t r ( D ) \mathrm{tr}\begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{bmatrix} = \mathrm{tr}(\mathbf{A}) + \mathrm{tr}(\mathbf{D}) tr[ACBD]=tr(A)+tr(D)
    式中, A ∈ C m × m , B ∈ C m × n , C ∈ C m × m , D ∈ C n × n \mathbf{A} \in C^{m \times m}, \mathbf{B} \in C^{m \times n}, \mathbf{C} \in C^{m \times m}, \mathbf{D} \in C^{n \times n} ACm×m,BCm×n,CCm×m,DCn×n

  • 矩阵 A H A A^{\mathrm{H}}A AHA A A H AA^{\mathrm{H}} AAH 的迹相等, 且有
    t r ( A H A ) = t r ( A A H ) = ∑ i = 1 n ∑ j = 1 n a i j ∗ a j i (5) \mathrm{tr}(A^{\mathrm{H}}A) = \mathrm{tr}(AA^{\mathrm{H}}) = \sum_{i=1}^{n}\sum_{j=1}^{n}a_{ij}^*a{ji} \tag{5} tr(AHA)=tr(AAH)=i=1nj=1naijaji(5)

  • 迹等于特征值之和, 即
    t r ( A ) = λ 1 + λ 2 + ⋯ + λ n (6) \mathrm{tr}(A) = \lambda_1 + \lambda_2 + \dots + \lambda_n \tag{6} tr(A)=λ1+λ2++λn(6)

  • 对于任何正整数 k k k, 有
    t r ( A k ) = ∑ i = 1 n λ i k (7) \mathrm{tr}(A^k) = \sum_{i=1}^n\lambda_i^k \tag{7} tr(Ak)=i=1nλik(7)

式子右边的和称为 A A A 的诸特征值的 k k k 次矩.

2. 关于迹的不等式

  • 对于一个复矩阵 A ∈ C m × n A \in C^{m \times n} ACm×n, 有 t r ( A H A ) = t r ( A A H ) ≥ 0 \mathrm{tr}(A^{\mathrm{H}}A)=\mathrm{tr}(AA^{\mathrm{H}}) \ge 0 tr(AHA)=tr(AAH)0

  • A , B A,B A,B 均为 m × n m \times n m×n 矩阵, 则
    t r [ ( A T B ) 2 ] ≤ t r ( A T A ) t r ( B T B ) t r [ ( A T B ) 2 ] ≤ t r ( A T A B T B ) t r [ ( A T B ) 2 ] ≤ t r ( A A T B B T ) \mathrm{tr}[(A^{\mathrm{T}}B)^2] \le \mathrm{tr}(A^{\mathrm{T}}A)\mathrm{tr}(B^{\mathrm{T}}B) \\ \mathrm{tr}[(A^{\mathrm{T}}B)^2] \le \mathrm{tr}(A^{\mathrm{T}}AB^{\mathrm{T}}B) \\ \mathrm{tr}[(A^{\mathrm{T}}B)^2] \le \mathrm{tr}(AA^{\mathrm{T}}BB^{\mathrm{T}}) \\ tr[(ATB)2]tr(ATA)tr(BTB)tr[(ATB)2]tr(ATABTB)tr[(ATB)2]tr(AATBBT)

  • t r ( A 2 ) ≤ t r ( A T A ) \mathrm{tr}(A^2) \le \mathrm{tr}(A^{\mathrm{T}}A) tr(A2)tr(ATA)

  • t r [ ( A + B ) ( A + B ) T ] ≤ 2 [ t r ( A A T ) + t r ( B B T ) ] \mathrm{tr}[(A+B)(A+B)^{\mathrm{T}}] \le 2[\mathrm{tr}(AA^{\mathrm{T}})+\mathrm{tr}(BB^{\mathrm{T}})] tr[(A+B)(A+B)T]2[tr(AAT)+tr(BBT)]

  • A A A B B B m × m m \times m m×m 对称矩阵, 则 t r ( A B ) ≤ 1 2 t r ( A 2 + B 2 ) \mathrm{tr}(AB) \le \frac{1}{2}\mathrm{tr}(A^2+B^2) tr(AB)21tr(A2+B2)

一个 m × n m \times n m×n 实矩阵 A A A F r o b e n i u s \mathrm{Frobenius} Frobenius 范数也可利用 m × m m \times m m×m 矩阵 A T A A^{\mathrm{T}}A ATA 或者 n × n n \times n n×n 矩阵 A A T AA^{\mathrm{T}} AAT 的迹定义为
∥ A ∥ F = t r ( A T A ) = t r ( A A T ) (8) \left \| A \right \|_{\mathrm{F}} = \sqrt{\mathrm{tr}(A^{\mathrm{T}}A)} = \sqrt{\mathrm{tr}(AA^{\mathrm{T}})} \tag{8} AF=tr(ATA) =tr(AAT) (8)

三、行列式

1. 定义和计算

一个 n × n n \times n n×n 的方阵 A A A 的行列式记作 d e t ( A ) \mathrm{det}(A) det(A) 或者 ∣ A ∣ |A| A, 定义为

d e t ( A ) = ∣ A ∣ = ∣ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n ∣ (9) \mathrm{det}(A) = |A| = \begin{vmatrix} a_{11}& a_{12}& \cdots& a_{1n}\\ a_{21}& a_{22}& \cdots& a_{2n}\\ \vdots& \vdots& & \vdots\\ a_{n1}& a_{n2}& \cdots& a_{nn} \end{vmatrix} \tag{9} det(A)=A=a11a21an1a12a22an2a1na2nann(9)

A = { a } ∈ C 1 × 1 A = \{ a \} \in C^{1 \times 1} A={a}C1×1, 则它的行列式由 d e t ( A ) = a \mathrm{det}(A) = a det(A)=a 给出.

矩阵 A A A 去掉第 i i i 行和第 j j j 列后得到的行列式叫元素 a i j a_{ij} aij 的代数余子式, 记作 A i j A_{ij} Aij. 当 j = i j=i j=i 时, A i = A i i A_i = A_{ii} Ai=Aii 称为 A A A 的主子式. 若令 A i j A_{ij} Aij n × n n \times n n×n 矩阵, A A A 删除第 i i i 行和第 j j j 列得到的 ( n − 1 ) × ( n − 1 ) (n-1) \times (n -1) (n1)×(n1) 子矩阵, 则

A i j = ( − 1 ) i + j d e t ( A i j ) (10) A_{ij} = (-1)^{i+j}\mathrm{det}(A_{ij}) \tag{10} Aij=(1)i+jdet(Aij)(10)

一个 n × n n \times n n×n 矩阵的行列式等于任意行 (或列) 的元素与对应的余子式乘积之和

d e t ( A ) = a i 1 A i 1 + a i 2 A i 2 + ⋯ + a i n A i n = ∑ j = 1 n a i j ( − 1 ) i + j d e t ( A i j ) (11) \mathrm{det}(A) = a_{i1}A_{i1} + a_{i2}A_{i2} + \dots + a_{in}A_{in} = \sum_{j=1}^{n}a_{ij}(-1)^{i+j}\mathrm{det}(A_{ij}) \tag{11} det(A)=ai1Ai1+ai2Ai2++ainAin=j=1naij(1)i+jdet(Aij)(11)

d e t ( A ) = a 1 j A 1 j + a 2 j A 2 j + ⋯ + a n j A n j = ∑ i = 1 n a i j ( − 1 ) i + j d e t ( A i j ) (12) \mathrm{det}(A) = a_{1j}A_{1j} + a_{2j}A_{2j} + \dots + a_{nj}A_{nj} = \sum_{i=1}^{n}a_{ij}(-1)^{i+j}\mathrm{det}(A_{ij}) \tag{12} det(A)=a1jA1j+a2jA2j++anjAnj=i=1naij(1)i+jdet(Aij)(12)

所以行列式计算就是一个递推过程, 当然这也是考试中十分重要的一部分, 考试中计算行列数通常不超过 4.

有了行列式我们就可以和其他的知识点连接起来.

定义 4: 行列式不等于零的矩阵称为非奇异矩阵. 非奇异矩阵 A A A 存在可逆矩阵 A − 1 A^{-1} A1.

2. 行列式等式关系

  • 矩阵两行 (或列) 互换位置, 行列式保持不变.

  • 矩阵的某行 (或列) 是其他行 (或列) 的线性组合, 则行列式为零. 特别地, 某行 (或列)与其他行 (或列) 成正比或相等, 抑或某行 (或列) 全为零.

  • d e t ( A ) = d e t ( A T ) \mathrm{det}(A) = \mathrm{det}(A^{\mathrm{T}}) det(A)=det(AT), 但是 d e t ( A H ) = [ d e t ( A T ) ] ∗ \mathrm{det}(A^{\mathrm{H}}) = [\mathrm{det}(A^{\mathrm{T}})]^* det(AH)=[det(AT)]

  • 单位矩阵的行列式等于 1, 即 d e t ( I ) = 1 \mathrm{det}(I) = 1 det(I)=1

  • 一个 H e r m i t i a n \mathrm{Hermitian} Hermitian 矩阵的行列式为实数, 因为 d e t ( A ) = d e t ( A H ) = d e t ( A T ) ⇒ d e t ( A ) = d e t ( A ∗ ) = [ d e t ( A ) ] ∗ \mathrm{det}(A) = \mathrm{det}(A^{\mathrm{H}}) = \mathrm{det}(A^{\mathrm{T}}) \Rightarrow \mathrm{det}(A) = \mathrm{det}(A^*) = [\mathrm{det}(A)]^* det(A)=det(AH)=det(AT)det(A)=det(A)=[det(A)] .

  • d e t ( A B ) = d e t ( A ) d e t ( B ) , A , B ∈ C n × n \mathrm{det}(AB) = \mathrm{det}(A)\mathrm{det}(B), \quad A,B \in C^{n \times n} det(AB)=det(A)det(B),A,BCn×n

  • 上三角或下三角矩阵 A A A, 其行列式为主对角线所有元素乘积. d e t ( A ) = ∏ i = 1 n a i i \mathrm{det}(A)=\prod_{i=1}^{n}a_{ii} det(A)=i=1naii. 对角矩阵也满足这个条件.

  • 给定一个任意常数 (可为复数) c c c, 则 d e t ( c A ) = c n d e t ( A ) \mathrm{det}(cA) = c^n\mathrm{det}(A) det(cA)=cndet(A)

  • A A A 非奇异, 则 d e t ( A − 1 ) = ( d e t ( A ) ) − 1 \mathrm{det}(A^{-1}) = (\mathrm{det}(A))^{-1} det(A1)=(det(A))1

  • 对于矩阵 A m × m , B m × n , C n × m , D n × n A_{m \times m}, B_{m \times n}, C_{n \times m}, D_{n \times n} Am×m,Bm×n,Cn×m,Dn×n, 分块矩阵的行列式满足

A 非 奇 异 ⇔ d e t [ A B C D ] = d e t ( A ) d e t ( D − C A − 1 B ) 或 D 非 奇 异 ⇔ d e t [ A B C D ] = d e t ( D ) d e t ( A − B D − 1 C ) A 非奇异 \Leftrightarrow \mathrm{det}\begin{bmatrix} A& B\\ C& D \end{bmatrix}= \mathrm{det}(A)\mathrm{det}(D - CA^{-1}B)\\ 或\\ D 非奇异 \Leftrightarrow \mathrm{det}\begin{bmatrix} A& B\\ C& D \end{bmatrix}= \mathrm{det}(D)\mathrm{det}(A - BD^{-1}C) Adet[ACBD]=det(A)det(DCA1B)Ddet[ACBD]=det(D)det(ABD1C)

证明方法就是把分块矩阵变成上三角或者下三角矩阵.

3. 行列式不等式关系

  • A , B A,B A,B 都是 m × n m \times n m×n 矩阵, 则

∣ d e t ( A H B ) ∣ 2 ≤ d e t ( A H A ) d e t ( B H B ) |\mathrm{det}(A^{\mathrm{H}}B)|^2 \le \mathrm{det}(A^{\mathrm{H}}A)\mathrm{det}(B^{\mathrm{H}}B) det(AHB)2det(AHA)det(BHB)

  • 对于 m × n m \times n m×n 矩阵 A A A, 有

d e t ( A ) ≤ ∏ i = 1 m ( ∑ j = 1 m ∣ a i j ∣ 2 ) 1 / 2 \mathrm{det}(A) \le \prod_{i=1}^{m} \left ( \sum_{j=1}^{m}|a_{ij}|^2 \right )^{1/2} det(A)i=1m(j=1maij2)1/2

  • A m × m , B m × n , C n × n A_{m \times m},B_{m \times n},C_{n \times n} Am×m,Bm×n,Cn×n, 则

d e t ( [ A B B H C ] ) ≤ d e t ( A ) d e t ( C ) \mathrm{det}\left ( \begin{bmatrix} A& B\\ B^{\mathrm{H}}& C \end{bmatrix} \right ) \le \mathrm{det}(A)\mathrm{det}(C) det([ABHBC])det(A)det(C)

  • A m × m ≠ O m × m , B m × n ≠ O m × m A_{m \times m} \neq O_{m \times m},B_{m \times n} \neq O_{m \times m} Am×m=Om×m,Bm×n=Om×m 半正定, 则

d e t ( A + B ) m ≥ d e t ( A ) m + d e t ( B ) m \sqrt[m]{\mathrm{det}(A+B)} \ge \sqrt[m]{\mathrm{det}(A)} + \sqrt[m]{\mathrm{det}(B)} mdet(A+B) mdet(A) +mdet(B)

  • 正定阵 A A A 的行列式大于零.

  • 半正定阵 A A A 的行列式大于或等于零.

  • m × m m \times m m×m 矩阵 A A A 半正定, 则

( d e t ( A ) ) 1 / m ≤ 1 m d e t ( A ) (\mathrm{det}(A))^{1/m} \le \frac{1}{m}\mathrm{det}(A) (det(A))1/mm1det(A)

  • 若矩阵 A m × m , B m × n A_{m \times m},B_{m \times n} Am×m,Bm×n 均半正定, 则

d e t ( A + B ) ≥ d e t ( A ) + d e t ( B ) \mathrm{det}(A+B) \ge \mathrm{det}(A) + \mathrm{det}(B) det(A+B)det(A)+det(B)

  • 若矩阵 A m × m 正 定 , B m × n A_{m \times m} 正定, B_{m \times n} Am×m,Bm×n 半正定, 则

d e t ( A + B ) ≥ d e t ( A ) \mathrm{det}(A+B) \ge \mathrm{det}(A) det(A+B)det(A)

  • 若矩阵 A m × m 正 定 , B m × n A_{m \times m} 正定, B_{m \times n} Am×m,Bm×n 半负定, 则

d e t ( A + B ) ≤ d e t ( A ) \mathrm{det}(A+B) \le \mathrm{det}(A) det(A+B)det(A)

四、矩阵的秩

1. 秩的定义

矩阵的秩常用来判断方程组解的数量.

定理 1: 在 p p p 维 (行或列) 向量的集合之中, 最多存在 p p p 个线性无关的 (行或列) 向量.

定理 2: 矩阵 A m × n A_{m \times n} Am×n 的线性无关行数与线性无关列数相同.

定义 5: 矩阵 A m × n A_{m \times n} Am×n 的秩定义为该矩阵中线性无关的行和列的数目.

由秩的大小, 矩阵方程 A m × n x n × 1 = b m × 1 A_{m \times n}x_{n \times 1}=b_{m \times 1} Am×nxn×1=bm×1 分为以下三种类型:

  • 适定方程: 若 m = n m = n m=n, 并且 r a n k ( A ) = n \mathrm{rank}(A)=n rank(A)=n, 即矩阵非奇异, 则称矩阵方程 A x = b Ax=b Ax=b 为适定方程.

  • 欠定方程: 若 m < r a n k ( A ) m < \mathrm{rank}(A) m<rank(A), 即独立方程个数小于独立未知参数个数, 则称矩阵方程 A x = b Ax=b Ax=b 为欠定方程.

  • 超定方程: 若 m > r a n k ( A ) m > \mathrm{rank}(A) m>rank(A), 即独立方程个数大于独立未知参数个数, 则称矩阵方程 A x = b Ax=b Ax=b 为超定方程.

矩阵中线性无关的列向量的所有线性组合形成了一个向量空间, 叫做矩阵的列空间.

定义 6: 矩阵 A m × n A_{m \times n} Am×n 的列空间 R ( A ) R(A) R(A) 的维数定义为该矩阵的秩.

r A = d i m [ R ( A ) ] (13) r_A = \mathrm{dim}[R(A)] \tag{13} rA=dim[R(A)](13)

等价叙述:

  • r a n k ( A ) = k \mathrm{rank}(A) = k rank(A)=k

  • 存在 A A A k k k 列且不多于 k k k 列组成一线性无关组

  • 存在 A A A k k k 行且不多于 k k k 行组成一线性无关组

  • 存在 A A A 的一个 k × k k \times k k×k 子矩阵具有非零行列式, 且 A A A 的所有 ( k + 1 ) × ( k + 1 ) (k+1) \times (k+1) (k+1)×(k+1) 子矩阵都具有零行列式.

  • 列空间 R ( A ) R(A) R(A) 的维数等于 k k k

  • k = n − d i m [ N u l l ( A ) ] k = n - \mathrm{dim}[\mathrm{Null}(A)] k=ndim[Null(A)], 其中 N u l l \mathrm{Null} Null 表示矩阵 A A A 的零空间.

定理 3: 令 r A = r a n k ( A ) r_A = \mathrm{rank}(A) rA=rank(A) r B = r a n k ( B ) r_B = \mathrm{rank}(B) rB=rank(B), 则乘积矩阵 A B AB AB 的秩 r A B = r a n k ( A B ) r_{AB} = \mathrm{rank}(AB) rAB=rank(AB) 满足不等式

r A B ≤ m i n { r A , r B } (14) r_{AB} \le \mathrm{min}\{ r_A,r_B \} \tag{14} rABmin{rA,rB}(14)

引理1: 在矩阵左乘或者右乘一个可逆矩阵, 矩阵的秩不变.

引理2: r a n k [ A , B ] ≤ r a n k ( A ) + r a n k ( B ) \mathrm{rank}[A,B] \le \mathrm{rank}(A) + \mathrm{rank}(B) rank[A,B]rank(A)+rank(B)

引理3: r a n k ( A + B ) ≤ r a n k [ A , B ] ≤ r a n k ( A ) + r a n k ( B ) \mathrm{rank}(A+B) \le \mathrm{rank}[A,B] \le \mathrm{rank}(A) + \mathrm{rank}(B) rank(A+B)rank[A,B]rank(A)+rank(B)

引理4: r a n k ( A + B ) ≤ r a n k [ A , B ] ≤ r a n k ( A ) + r a n k ( B ) \mathrm{rank}(A+B) \le \mathrm{rank}[A,B] \le \mathrm{rank}(A) + \mathrm{rank}(B) rank(A+B)rank[A,B]rank(A)+rank(B)

引理5: 对于 m × n m \times n m×n 矩阵 A A A n × q n \times q n×q 矩阵 B B B, 秩不等式 r a n k ( A B ) ≥ r a n k ( A ) + r a n k ( B ) − n \mathrm{rank}(AB) \ge \mathrm{rank}(A) + \mathrm{rank}(B) - n rank(AB)rank(A)+rank(B)n 成立.

2. 秩的性质

  • 秩是一个正整数

  • 秩小于或等于矩阵的行数或列数

  • n × n n \times n n×n 矩阵 A A A 的秩等于 n n n 时, A A A 满秩, 可逆.

  • r a n k ( A m × n ) < m i n { m , n } \mathrm{rank}(A_{m \times n}) < \mathrm{min}\{m,n\} rank(Am×n)<min{m,n}, 则 A A A 秩亏缺, 一个亏缺的方阵叫做奇异矩阵, 不可逆.

  • r a n k ( A m × n ) = m ( < n ) \mathrm{rank}(A_{m \times n}) = m(<n) rank(Am×n)=m(<n), 则 A A A 满行秩.

  • r a n k ( A m × n ) = n ( < m ) \mathrm{rank}(A_{m \times n}) = n(<m) rank(Am×n)=n(<m), 则 A A A 满列秩.

  • 任何矩阵 A A A 左乘满行秩或右称一个满列秩矩阵后, 矩阵 A A A 的秩保存不变.

  • 当矩阵的秩 r a n k ( A m × n ) = r ≠ 0 \mathrm{rank}(A_{m \times n}) = r \neq 0 rank(Am×n)=r=0 时, 至少存在一个 r × r r \times r r×r 子矩阵 X r × r X_{r \times r} Xr×r 满秩或非奇异.

3. 秩的等式

  • A ∈ C m × n A \in C^{m \times n} ACm×n, 则 r a n k ( A H ) = r a n k ( A T ) = r a n k ( A ∗ ) = r a n k ( A ) \mathrm{rank}(A^{\mathrm{H}})=\mathrm{rank}(A^{\mathrm{T}})=\mathrm{rank}(A^*) = \mathrm{rank}(A) rank(AH)=rank(AT)=rank(A)=rank(A)

  • A ∈ C m × n A \in C^{m \times n} ACm×n c ≠ 0 c \neq 0 c=0, 则 r a n k ( c A ) = r a n k ( A ) \mathrm{rank}(cA)=\mathrm{rank}(A) rank(cA)=rank(A)

  • A ∈ C m × m A \in C^{m \times m} ACm×m C ∈ C n × n C \in C^{n \times n} CCn×n 均非奇异, 则对于任意一矩阵 B ∈ C m × n B \in C^{m \times n} BCm×n r a n k ( A B ) = r a n k ( B ) = r a n k ( B C ) = r a n k ( A B C ) \mathrm{rank}(AB)=\mathrm{rank}(B)=\mathrm{rank}(BC)=\mathrm{rank}(ABC) rank(AB)=rank(B)=rank(BC)=rank(ABC)

  • A , B ∈ C m × m A,B \in C^{m \times m} A,BCm×m, 则 r a n k ( A ) = r a n k ( B ) \mathrm{rank}(A)=\mathrm{rank}(B) rank(A)=rank(B) 当且仅当存在非奇异矩阵 X ∈ C m × m X \in C^{m \times m} XCm×m Y ∈ C n × n Y \in C^{n \times n} YCn×n 使得 B = X A Y B = XAY B=XAY

  • A ∈ C m × n A \in C^{m \times n} ACm×n

r a n k ( A A T ) = r a n k ( A T A ) − r a n k ( A ) \mathrm{rank}(AA^{\mathrm{T}})=\mathrm{rank}(A^{\mathrm{T}}A) - \mathrm{rank}(A) rank(AAT)=rank(ATA)rank(A)

r a n k ( A A H ) = r a n k ( A H A ) − r a n k ( A ) \mathrm{rank}(AA^{\mathrm{H}})=\mathrm{rank}(A^{\mathrm{H}}A) - \mathrm{rank}(A) rank(AAH)=rank(AHA)rank(A)

  • A ∈ C m × n A \in C^{m \times n} ACm×n

r a n k ( A ) = m ⇔ d e t ( A ) ≠ 0 ⇔ A 非 奇 异 \mathrm{rank}(A)=m \Leftrightarrow \mathrm{det}(A) \neq 0 \Leftrightarrow A 非奇异 rank(A)=mdet(A)=0A

  • m × m m \times m m×m 矩阵 A A A 非奇异, 且 B ∈ C m × n , C ∈ C n × m , D ∈ C n × n B \in C^{m \times n}, C \in C^{n \times m}, D \in C^{n \times n} BCm×n,CCn×m,DCn×n, 则

r a n k [ A B C D ] = m ⇔ D = C A − 1 B \mathrm{rank}\begin{bmatrix} A& B\\ C& D \end{bmatrix} = m \Leftrightarrow D = CA^{-1}B rank[ACBD]=mD=CA1B

4. 秩的不等式

  • 对于任意 m × n m \times n m×n 矩阵 A A A r a n k ( A ) ≤ m i n { m , n } \mathrm{rank}(A) \le \mathrm{min}\{m,n\} rank(A)min{m,n}

  • A , B ∈ C m × n A,B \in C^{m \times n} A,BCm×n, 则 r a n k ( A + B ) ≤ r a n k ( A ) + r a n k ( B ) \mathrm{rank}(A+B) \le \mathrm{rank}(A) + \mathrm{rank}(B) rank(A+B)rank(A)+rank(B)

  • A ∈ C m × k A \in C^{m \times k} ACm×k B ∈ C k × n B \in C^{k \times n} BCk×n, 则

r a n k ( A ) + r a n k ( B ) − k ≤ r a n k ( A B ) ≤ m i n { r a n k ( A ) , r a n k ( B ) } \mathrm{rank}(A) + \mathrm{rank}(B) - k \le \mathrm{rank}(AB) \le \mathrm{min}\{\mathrm{rank}(A),\mathrm{rank}(B)\} rank(A)+rank(B)krank(AB)min{rank(A),rank(B)}

  • 在任意矩阵中删去某些行与 (或) 某些列, 则所得子矩阵的秩不可能大于原矩阵的秩.
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值