- https://paperswithcode.com/datasets
这个网站上有各种类型的数据集,而且收集了一些论文的代码,挺好的。 - UCI数据集
http://archive.ics.uci.edu/ml/index.php - ASU数据集
https://jundongl.github.io/scikit-feature/datasets.html - OpenML数据集
https://www.openml.org/search?type=data - kaggle数据集
https://www.kaggle.com/
这是kaggle竞赛里面的数据集,论文里面也有用的。 - http://www.gems-system.org
这个数据集在论文里面很常见,不过自己从来都登不上去 - 高维数据集,特征多样本少
(1) https://github.com/rdiaz02/varSelRF-suppl-mat
(2) https://github.com/primekangkang/Genedata - 多标签数据集
(1)http://mulan.sourceforge.net/datasets-mlc.html
(2)https://waikato.github.io/meka/datasets
这个是MEKA里的几个示例数据,meka是专门用来处理多标签问题的程序。
(3)http://palm.seu.edu.cn/zhangml
这个链接是东南大学老师的主页,上面有数据集以及一些程序的代码
(4)http://computer.njnu.edu.cn/Lab/LABIC/LABIC_Software.html.
这个好像要翻墙才能进,最近翻不了墙,没办法验证,暂时放上去。
出处:Dong H , Sun J , Sun X , et al. A many-objective feature selection for multi-label classification[J]. Knowledge-Based Systems, 2020, 208(7):106456.
(5)http://www.uco.es/kdis/mllresources/
这个数据集真的全!!!终于找到之前在别的论文里面缺的数据集了!!!我爱这个作者,感谢他!
出处:Qian W, Xiong C, Wang Y. A ranking-based feature selection for multi-label classification with fuzzy relative discernibility[J]. Applied Soft Computing, 2021, 102: 106995.
(6) http://nyc.lti.cs.cmu.edu/clair/datasets.htm
出处:Yang Y, Gopal S. Multilabel classification with meta-level features in a learning-to-rank framework[J]. Machine Learning, 2012, 88(1-2): 47-68.
09-21
4128

10-27
1554

06-15
552
