H1
H2
H3
这是一段引用
print(1)
1
#这是我的第一个代码
a=1
b=2
c=a+b
print(c)
3
print("hello world")
hello world
笔记总结
有幸参加这次datawhale的组队学习
第一部分:Python学习
作为一个文科生,竟然学起了敲代码,也是疯狂,以前从来没有想过的事情,以前也没有过这种想法,接触Python的时候记得是2019年,当时也是由于机缘巧合参加了一个比赛,但是那时候什么也不懂,从来没有听说过编程,以为这个好像只是计算机专业的同学才可以学习的事情。后来慢慢地上课接触了计算机语言,但那时候自己没有需求,哈哈哈,然后天天上课也不认真,课后也不练习,没有输入更没有输出,这样子长久下来发现只是虚度了时间。
今年以来,由于疫情在家也没有去学校上学,然后在网络上听一些学习讲座,发现许多有关疫情的数据处理讲座都用到了数据分析,我们现在生活中一个数据的世界当中,我们需要用到对这么多数据做出反应,我们不能像以前那样子去认识这个世界。最重要的是今年的论文写作需要用到自然语言处理方面的知识,然后我就发现我好像不学点Python不行了,不学python没法毕业啊,那只能硬着头皮去学习了。于是到处搜集资料开启了我的学习编程之路。这次有幸遇到这个组队学习项目,希望能够有所收获。
第二部分:nlp 学习
本章将会对新闻文本分类进行赛题讲解,对赛题数据进行说明,并给出解题思路。
Task1赛题理解
赛题名称:零基础入门NLP之新闻文本分类
赛题目标:通过这道赛题可以引导大家走入自然语言处理的世界,带大家接触NLP的预处理、模型构建和模型训练等知识点。
赛题任务:赛题以自然语言处理为背景,要求选手对新闻文本进行分类,这是一个典型的字符识别问题。
学习目标
理解赛题背景与赛题数据
完成赛题报名和数据下载,理解赛题的解题思路
赛题数据
赛题以匿名处理后的新闻数据为赛题数据,数据集报名后可见并可下载。赛题数据为新闻文本,并按照字符级别进行匿名处理。整合划分出14个候选分类类别:财经、彩票、房产、股票、家居、教育、科技、社会、时尚、时政、体育、星座、游戏、娱乐的文本数据。
赛题数据由以下几个部分构成:训练集20w条样本,测试集A包括5w条样本,测试集B包括5w条样本。为了预防选手人工标注测试集的情况,我们将比赛数据的文本按照字符级别进行了匿名处理。
数据标签
处理后的赛题训练数据如下:
Image
在数据集中标签的对应的关系如下:{‘科技’: 0, ‘股票’: 1, ‘体育’: 2, ‘娱乐’: 3, ‘时政’: 4, ‘社会’: 5, ‘教育’: 6, ‘财经’: 7, ‘家居’: 8, ‘游戏’: 9, ‘房产’: 10, ‘时尚’: 11, ‘彩票’: 12, ‘星座’: 13}
评测指标
评价标准为类别f1_score的均值,选手提交结果与实际测试集的类别进行对比,结果越大越好。
数据读取
使用Pandas库完成数据读取操作,并对赛题数据进行分析。
解题思路
赛题思路分析:赛题本质是一个文本分类问题,需要根据每句的字符进行分类。但赛题给出的数据是匿名化的,不能直接使用中文分词等操作,这个是赛题的难点。
因此本次赛题的难点是需要对匿名字符进行建模,进而完成文本分类的过程。由于文本数据是一种典型的非结构化数据,因此可能涉及到特征提取和分类模型两个部分。为了减低参赛难度,我们提供了一些解题思路供大家参考:
思路1:TF-IDF + 机器学习分类器
直接使用TF-IDF对文本提取特征,并使用分类器进行分类。在分类器的选择上,可以使用SVM、LR、或者XGBoost。
思路2:FastText
FastText是入门款的词向量,利用Facebook提供的FastText工具,可以快速构建出分类器。
思路3:WordVec + 深度学习分类器
WordVec是进阶款的词向量,并通过构建深度学习分类完成分类。深度学习分类的网络结构可以选择TextCNN、TextRNN或者BiLSTM。
思路4:Bert词向量
Bert是高配款的词向量,具有强大的建模学习能力。