Decision Tree

Cat classification example

这一章节使用的样例为猫咪分类样例,如下图所示,给出猫咪的三个特征,要求判断是否为猫咪(二分类任务)

在这里插入图片描述

Decision Tree

决策树算法的模型是一棵树。对每个输入样例,算法会从根节点开始,逐步前进到对应target的叶子。

在这里插入图片描述

对一个任务有非常多种可能的决策树,例如

在这里插入图片描述

Learning Process

决策树模型的主要流程遵循分而治之
d e f   B u i l d T r e e : 1. 创建 n o d e 2. i f  当前 n o d e 对应的样例都是同一类别,建立叶子并 r e t u r n 3. i f  当前集合为空 ∅ , 或者不存在可以划分的属性 , 建立叶子并 r e t u r n 4. 不满足上两个返回条件 , 则按 ∗ 最优划分属性 ∗ 进行划分 : f o r   每个属性取值 : 生成分支 , 递入下一层 ‾ \underline{ \over{ \begin{array}{l} \bf {def}\ BuildTree:\\ 1.创建node \\ 2. \bold {if}\ 当前node对应的样例都是同一类别,建立叶子并\bf {return} \\ 3. \bold {if}\ 当前集合为空 \empty, 或者不存在可以划分的属性, 建立叶子并\bf {return}\\ \\ 4.不满足上两个返回条件, 则按*最优划分属性*进行划分:\\ \bf {for}\ 每个属性取值:\\ \quad 生成分支, 递入下一层 \end{array} }} def BuildTree:1.创建node2.if 当前node对应的样例都是同一类别,建立叶子并return3.if 当前集合为空,或者不存在可以划分的属性,建立叶子并return4.不满足上两个返回条件,则按最优划分属性进行划分:for 每个属性取值:生成分支,递入下一层

在这里插入图片描述

几个重要的决策点:

  • 如何选择每个node的属性?目的是让子节点足够纯净(pure)
  • 何时停止split,即确定叶子
    • 都为同一类
    • 或者超过预定的深度(限制深度保证运行效率和防止过拟合)
    • 或者收益太小(容易过拟合)
    • 或者划分出来的子集太小

Measuring purity - entropy

我们使用熵(entropy)来描述数据的混乱程度,回顾前面的知识,对特定分布的数据,其熵可以表示为
H ( p ) = E x ∼ P ( − log ⁡ 2 P ( x ) ) = − ∑ P ( x ) log ⁡ 2 P ( x ) H(p) = \mathrm {E}_{x\sim P}(-\log_2 P(x)) = -\sum P(x)\log_2 P(x) H(p)=ExP(log2P(x))=P(x)log2P(x)
对样例中的二分类任务,可以写成 − p 1 log ⁡ 2 ( p 1 ) − ( 1 − p 1 ) log ⁡ 2 ( 1 − p 1 ) -p_1\log_2 (p_1) - (1 - p_1)\log_2 (1 - p_1) p1log2(p1)(1p1)log2(1p1),其曲线为

在这里插入图片描述

如果数据更偏向某一类别(更纯净),熵值较低;如果一半一半(最混乱),熵值最高。

二分类熵值计算实现

def compute_entropy(y):
    """
    Computes the entropy for 
    
    Args:
       y (ndarray): Numpy array indicating whether each example at a node is
           edible (`1`) or poisonous (`0`)
       
    Returns:
        entropy (float): Entropy at that node
        
    """
    # You need to return the following variables correctly
    entropy = 0.
    
    ### START CODE HERE ###
    if(len(y)):
        p_1 = y.sum()/len(y)
        if(p_1 != 0.0 and p_1 != 1.0):
            entropy = -p_1 * np.log2(p_1) - (1 - p_1) * np.log2(1 - p_1)
    ### END CODE HERE ###        
    
    return entropy

Choosing a split - Information Gain

在决策树中,熵的减少称为Information Gaim(信息增益)。

以猫咪预测的样例为例,首先构造根节点,分别验证三种特征划分后子集的熵

在这里插入图片描述

求加权平均(Weighted arithmetic mean),因为决定混乱程度的因素还有集合的大小;在实际的构建流程中,还需要进一步求得在划分后获得的信息增益(information gain),即
b e f o r   s p l i t :   H ( p ) = H ( 0.5 ) = 1 e a r   s h a p e :   5 10 H ( 0.8 ) + 5 10 H ( 0.2 ) = 0.72 → 0.28 f a c e   s h a p e :   7 10 H ( 0.57 ) + 3 10 H ( 0.33 ) = 0.969 → 0.031 w h i s k e r s :   4 10 H ( 0.75 ) + 6 10 H ( 0.33 ) = 0.876 → 0.124 \begin{array}{l} befor\ split:\ H(p) = H(0.5) = 1\\ ear\ shape:\ \frac 5 {10}H(0.8) + \frac 5 {10}H(0.2) = 0.72 \to 0.28\\ face\ shape:\ \frac 7 {10}H(0.57) + \frac 3 {10}H(0.33) = 0.969 \to 0.031\\ whiskers: \ \frac 4 {10}H(0.75) + \frac 6 {10}H(0.33) = 0.876 \to 0.124 \end{array} befor split: H(p)=H(0.5)=1ear shape: 105H(0.8)+105H(0.2)=0.720.28face shape: 107H(0.57)+103H(0.33)=0.9690.031whiskers: 104H(0.75)+106H(0.33)=0.8760.124
综上,根节点的划分特征应该选择Ear Shape.

计算信息增益的另一个好处是,当某次划分带来的增益过小的时候,可以直接终止递归,降低树的规模,并防止过拟合。

给出Information Gain的通式,设 p 1 l e f t , p 1 r i g h t , p 1 r o o t p_1^{left}, p_1^{right}, p_1^{root} p1left,p1right,p1root分别代表左子、右子和根节点中正例的比例, w l e f t , w r i g h t w^{left}, w^{right} wleft,wright代表左右子的权重,则有
G a i n = H ( p 1 r o o t ) − ( w l e f t H ( p 1 l e f t ) + w r i g h t H ( p 1 r i g h t ) ) Gain = H(p_1^{root}) - (w^{left}H(p_1^{left}) + w^{right}H(p_1^{right})) Gain=H(p1root)(wleftH(p1left)+wrightH(p1right))

另一种度量的方法是Gini index,基尼指数。该指数反映了数据集中随机抽取两个样本,其target不一致的概率,Gini越小则纯度越高。

还有一种方法是gain ration(增益率),用于优化信息增益法可能存在的对数量较多属性的偏好。

信息增益、增益率和基尼指数分别对应了 I D 3 , C 4.5 和 C A R T ID3, C4.5和CART ID3,C4.5CART三种决策树算法。

实现计算信息增益

def split_dataset(X, node_indices, feature):
    """
    Splits the data at the given node into
    left and right branches
    
    Args:
        X (ndarray):             Data matrix of shape(n_samples, n_features)
        node_indices (ndarray):  List containing the active indices. I.e, the samples being considered at this step.
        feature (int):           Index of feature to split on
    
    Returns:
        left_indices (ndarray): Indices with feature value == 1
        right_indices (ndarray): Indices with feature value == 0
    """
    
    # You need to return the following variables correctly
    left_indices = []
    right_indices = []
    
    ### START CODE HERE ###
    left_indices = np.array(node_indices)[X[node_indices, feature] == 1] # 转array防止输入是list
    right_indices = np.array(node_indices)[X[node_indices, feature] == 0]
    ### END CODE HERE ###
        
    return left_indices.tolist(), right_indices.tolist()
def compute_information_gain(X, y, node_indices, feature):
    
    """
    Compute the information of splitting the node on a given feature
    
    Args:
        X (ndarray):            Data matrix of shape(n_samples, n_features)
        y (array like):         list or ndarray with n_samples containing the target variable
        node_indices (ndarray): List containing the active indices. I.e, the samples being considered in this step.
   
    Returns:
        cost (float):        Cost computed
    
    """    
    # Split dataset
    left_indices, right_indices = split_dataset(X, node_indices, feature)
    
    # Some useful variables
    X_node, y_node = X[node_indices], y[node_indices]
    X_left, y_left = X[left_indices], y[left_indices]
    X_right, y_right = X[right_indices], y[right_indices]
    
    # You need to return the following variables correctly
    information_gain = 0
    
    ### START CODE HERE ###
    
    # Weights 
    w_left = len(left_indices) / len(node_indices)
    w_right = len(right_indices) / len(node_indices)
    #Weighted entropy
    H_left = w_left * compute_entropy(y_left)
    H_right = w_right * compute_entropy(y_right)
    #Information gain                                                   
    information_gain = compute_entropy(y_node) - H_left - H_right
    ### END CODE HERE ###  
    
    return information_gain

选择合适的feature

def get_best_split(X, y, node_indices):   
    """
    Returns the optimal feature and threshold value
    to split the node data 
    
    Args:
        X (ndarray):            Data matrix of shape(n_samples, n_features)
        y (array like):         list or ndarray with n_samples containing the target variable
        node_indices (ndarray): List containing the active indices. I.e, the samples being considered in this step.

    Returns:
        best_feature (int):     The index of the best feature to split
    """    
    
    # Some useful variables
    num_features = X.shape[1]
    
    # You need to return the following variables correctly
    best_feature = -1
    best_gain = 0
    
    ### START CODE HERE ###
    for feature in range(num_features):
        gain = compute_information_gain(X, y, node_indices, feature)
        if(gain > best_gain):
            best_feature = feature
            best_gain = gain
       
    ### END CODE HERE ##    
   
    return best_feature

Build a tree

def build_tree_recursive(X, y, node_indices, branch_name, max_depth, current_depth):
    """
    Build a tree using the recursive algorithm that split the dataset into 2 subgroups at each node.
    This function just prints the tree.
    
    Args:
        X (ndarray):            Data matrix of shape(n_samples, n_features)
        y (array like):         list or ndarray with n_samples containing the target variable
        node_indices (ndarray): List containing the active indices. I.e, the samples being considered in this step.
        branch_name (string):   Name of the branch. ['Root', 'Left', 'Right']
        max_depth (int):        Max depth of the resulting tree. 
        current_depth (int):    Current depth. Parameter used during recursive call.
   
    """ 

    # Maximum depth reached - stop splitting
    if current_depth == max_depth:
        formatting = " "*current_depth + "-"*current_depth
        print(formatting, "%s leaf node with indices" % branch_name, node_indices)
        return
   
    # Otherwise, get best split and split the data
    # Get the best feature and threshold at this node
    best_feature = get_best_split(X, y, node_indices) 
    tree.append((current_depth, branch_name, best_feature, node_indices))
    
    formatting = "-"*current_depth
    print("%s Depth %d, %s: Split on feature: %d" % (formatting, current_depth, branch_name, best_feature))
    
    # Split the dataset at the best feature
    left_indices, right_indices = split_dataset(X, node_indices, best_feature)
    
    # continue splitting the left and the right child. Increment current depth
    build_tree_recursive(X, y, left_indices, "Left", max_depth, current_depth+1)
    build_tree_recursive(X, y, right_indices, "Right", max_depth, current_depth+1)

Futher Refinements

One-hot

在此前的例子中,特征往往都是二项的,即圆脸/非圆脸,有胡须/没胡须。假设某个特征存在超过两个的可能值,例如

在这里插入图片描述

这种情况下,可以使用One-hot编码,将该列别划分为多个二项特征,可以观察到每个样例只有一个子特征的值为1,即One-hot

在这里插入图片描述

很多开源库都提供了这个功能,例如pandas的.get_dummies()

One-hot不止适用于决策树,也可以用于神经网络。

Continuous valued features

对于连续特征,例如下图,通常使用选定阈值的方式进行划分(连续值离散化,Discretization)

在这里插入图片描述

选择多个阈值,分别计算信息增益,取增益最高的阈值与其他特征的信息增益进行比较。阈值通常从中位数开始取值。

在这里插入图片描述

Missing Value

对于不能包含缺失值的模型,需要填充缺失值,常用的方法为:

  • 对连续属性,填充均值
  • 对离散属性,填充众数

这样填充基于样本都是独立同分布的假设。需要注意的是,填充只能用于feature缺失,若target缺失,一般会直接抛弃该样本。

还有一种方法是矩阵补全(matrix completion),在低秩假设下恢复数据。

Regression Trees

如果预测的目标值不是离散的类别,而是连续的值,即回归问题,例如

在这里插入图片描述

此时决策树泛化为回归树。

在这里插入图片描述

Choosing a split - variance

和决策树一样,回归树也需要某个用来评估复杂度、选择合适划分特征的尺度。我们希望该尺度能够反映数据的波动情况(离散程度),很容易想到的方法是求方差。
v a r i a n c e = ∑ ( x − μ ) 2 variance = \sum(x - \mu)^2 variance=(xμ)2
在这里插入图片描述

同理进行加权平均后,求取信息增益
G a i n = v r o o t − ( w l e f t v l e f t + w r i g h t v r i g h t ) Gain = v^{root} - (w^{left}v^{left} + w^{right}v^{right}) Gain=vroot(wleftvleft+wrightvright)

方差最小,均值最能够表现当前节点的共同特征。

Multiple decision trees

单个决策树往往对数据的微小变化非常敏感,如下图所示,将其中一个猫咪样例的耳朵形状改变,树的构建就会发生非常大的变化

在这里插入图片描述

解决这一问题的方式是使用多个树,又称tree ensemble,综合多个树的结果做出推断

在这里插入图片描述

Build tree ensemble - sampling with replacement

有放回抽样(sampling with replacement)即在抽样后,将抽出的样例放回样本中,再进行下一次抽样的过程。

举例来说,假设有四个硬币,分别为红、黄、绿、蓝色,有放回抽样,每次取一个

在这里插入图片描述

将这个过程应用于构建决策树:

  1. 将所有的数据构成数据集,然后进行有放回的抽样,得到一个训练集(可能会重复,没关系)
  2. 重复多次抽样,并进行训练

Random forest algorithm

训练集大小 = m ; f o r   b = 1   t o   B : 有放回抽样创建大小同样为 m 的新数据集 ; 使用抽样得到的数据集训练一棵决策树 ; \begin{array}{l} 训练集大小 = m;\\ \mathbf {for}\ b = 1\ to\ B:\\ \quad 有放回抽样创建大小同样为m的新数据集;\\ \quad 使用抽样得到的数据集训练一棵决策树;\\ \end{array} 训练集大小=m;for b=1 to B:有放回抽样创建大小同样为m的新数据集;使用抽样得到的数据集训练一棵决策树;

决策树的数量B通常在100左右,64到228之间都可以;过大的B不会带来更好的模型性能,反而会增大运行开销。

这种构建方式也被称为bagged decision tree,因为每棵树都是在一个虚拟的bag上训练而成的。

bagged decision tree的森林中可能会训练出相似的树结构,导致模型效果不好,可以进一步做出改进,增加特征选择的随机性,即随机森林算法(Random forest algorithm):当需要从n个特征中选择当前节点的划分特征时,首先从n个特征中随机抽样出包含k个特征的子集,从该子集的k个特征中选择划分特征。k的大小一般是 n \sqrt n n .

通过随机抽样特征,每个决策树都会更多考虑数据集发生微小变化的可能性,并通过组成森林平均这些扰动,从而提升了模型对微小变化的鲁棒性。

XGBoost

通过对决策树算法进行些许修改,可以获得更好的模型性能。
训练集大小 = m ; f o r   b = 1   t o   B : 有放回抽样创建大小同样为 m 的新数据集 ; 为当前森林预测错误的样例分配更高的抽样概率,使得新的子集更可能出现此前预测错误的样例 使用抽样得到的数据集训练一棵决策树 ; \begin{array}{l} 训练集大小 = m;\\ \mathbf {for}\ b = 1\ to\ B:\\ \quad 有放回抽样创建大小同样为m的新数据集;\\ \quad \quad 为当前森林预测错误的样例分配更高的抽样概率,使得新的子集更可能出现此前预测错误的样例\\ \quad 使用抽样得到的数据集训练一棵决策树;\\ \end{array} 训练集大小=m;for b=1 to B:有放回抽样创建大小同样为m的新数据集;为当前森林预测错误的样例分配更高的抽样概率,使得新的子集更可能出现此前预测错误的样例使用抽样得到的数据集训练一棵决策树;
直观上理解,Boost tree算法使得新的树更多关注森林不能正确处理的样例,从而提升了模型的表现。

在这里插入图片描述

XGBoost(eXtreme Gradient Boosting)是Boost一个开源实现,提供了一系列boost算法的模型和方法,并且内置正则化方法,广泛在竞赛中使用。

# Classification
from xgboost import XGBClassifier

model = XGBClassifer()
model.fit(X, y)
pred = model.predict(X_test)
# Regression
from xgboost import XGBRegressor

model = XGBRegressor
model.fit(X, y)
pred = model.predict(X_test)

When to use decision trees

决策树通常更适合表格(结构化)数据(tabular or structured data),数据类似于电子表格(spreadsheet);

不适合在非结构化数据,例如图像、音频、文本等数据中使用结构树,这类数据通常不会存在电子表格里。

相比神经网络,决策树的训练时间通常更短;且较小的决策树是可解释的(interpretable),可以通过输出整个树来直观理解决策树如何进行决策。

决策树的可解释性通常需要结合可视化手法,尤其是树很大的时候。

通常XGBoost就足够大多数需求了

神经网络适合所有类型的数据,表格和非结构化数据都可以。

对图像、音频、文本等任务,神经网络一般是首选。

比决策树慢,因此周期会比较长。

不过可以使用迁移学习,一方面减少数据量。

多个神经网络可以组合成更大的系统,因为神经网络的输出通常是平滑或连续的,可微。

参考

  • 吴恩达《机器学习2022》
  • 西瓜书
  • 南瓜书
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Recitative

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值