一 SVM简单介绍
支持向量机(Support Vector Machine,SVM)是Corinna Cortes和Vapnik等于1995年首先提出的,它在解决小样本、非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中。 在机器学习中,支持向量机是与相关的学习算法有关的监督学习模型,可以分析数据、识别模式,用于分类和回归分析。
二 函数间隔与几何间隔
对一个数据点进行分类,当超平面离数据点的“间隔”越大,分类的确信度(confidence)也越大。所以,为了使得分类的确信度尽量高,需要让所选择的超平面能够最大化这个“间隔”值。这个间隔就是下图中的Gap的一半。
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-a4dh4d8y-1650986940916)(image/2.png)]
2.1 函数间隔
定义函数间隔为:
γ ^