SVM支持向量机

本文详细介绍了支持向量机(SVM)的概念,包括其最大间隔分类器、函数间隔与几何间隔、对偶问题、核函数的运用以及SMO算法。SVM通过最大化几何间隔找到最优超平面,解决线性可分和非线性分类问题,利用核函数将数据映射到高维空间实现非线性分类。文中还详细讲述了SMO算法的步骤,包括如何选取和调整拉格朗日乘子,以及如何计算误差并更新模型。
摘要由CSDN通过智能技术生成

一 SVM简单介绍

支持向量机(Support Vector Machine,SVM)是Corinna Cortes和Vapnik等于1995年首先提出的,它在解决小样本、非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中。 在机器学习中,支持向量机是与相关的学习算法有关的监督学习模型,可以分析数据、识别模式,用于分类和回归分析。

二 函数间隔与几何间隔

对一个数据点进行分类,当超平面离数据点的“间隔”越大,分类的确信度(confidence)也越大。所以,为了使得分类的确信度尽量高,需要让所选择的超平面能够最大化这个“间隔”值。这个间隔就是下图中的Gap的一半。
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-a4dh4d8y-1650986940916)(image/2.png)]

2.1 函数间隔

定义函数间隔为:
γ ^

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

取个名字真难啊啊

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值